Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet387/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   383   384   385   386   387   388   389   390   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 13.5-1
Obtain the pole-zero plot of the transfer function 
V
o
(
s
)/
 V
s
(
s
), excitation function and the output 
function in the circuit shown in Fig. 13.5-1 with 
v
S
(
t


10 
e
-
1.5
 t
cos2
t u
(
t
) V.
Solution
The differential equation describing the second mesh current 
in this circuit is derived below. The two mesh equations are
di
dt
i
i dt v t
i
i dt
di
dt
i
t
s
t
1
1
2
2
1
2
2
0
+

=

+
+ =
−∞
−∞


(
)
( )
(
)
Adding the two mesh equations results in 
di
dt
di
dt
i
v t
di
dt
v t
di
dt
i
s
s
1
2
2
1
2
2
+
+ =

=


( )
( )
Differentiating the second mesh equation twice with respect to time and using the above equation 
in the result gives us
d i
dt
d i
dt
di
dt
i
v t
s
3
2
3
2
2
2
2
2
2
+
+
+ =
( )
v
o
(
t
) is numerically equal to 
i
2
(
t
) and hence the differential equation governing 
v
o
(
t
) is 
d v
dt
d v
dt
dv
dt
v
v t
o
o
o
o
s
3
3
2
2
2
+
+
+
=
( )
The characteristic equation is 
s
3

s
2

2
s



0 and its roots are 
s
1
= -
0.2151

j
1.307, 
s
2
= -
0.2151

j
1.307 and 
s
3
= -
0.5698. The roots of a polynomial of degree higher than 2 will normally 
require the help of root-finding software or numerical methods. There is a pair of 
complex conjugate
roots.
Fig. 13.5-1 
Circuit for 
Example: 13.5-1
1 F
1 H

+

+
v
s
(
t
)
v
o
(
t
)
i
1
1 H 1 

i
2


Method of Partial Fractions for Inverting Laplace Transforms 
13.13
The System Function 
H s
V s
V s
s
s
s
o
s
( )
( )
( )
=
=
+ +
+
1
2
1
3
2
Laplace transform of 
e
-
1.5
t
cos2
t
 
u
(
t
) is 
s
s
+
+
+
1 5
1 5
4
2
.
(
. )
Therefore, 
V
s
(
s


s
s
+
+
+
1 5
1 5
4
2
.
(
. )
and 
V
o
(
s


1
2
1
10
1 5
1 5
4
3
2
2
s
s
s
s
s
+ +
+
×
+
+
+
(
. )
(
. )
We observe that the denominator polynomial is the same as the left side of the characteristic equation 
of the governing differential equation. This will always be so. 
Hence poles of System Function 
(
they 
are also called ‘system poles’
)
 will be the same as the natural frequencies of the circuit for any linear 
time-invariant circuit.
Therefore the system poles are 
p
1
= -
0.2151

j
1.307, 
p
2
= -
0.2151

j
1.307 and 
p
3
= -
0.5698.
The numerator polynomial of System Function in this case is trivial and there are no ‘system zeros’.
The excitation poles are at 
p
e
1
= -
1.5

j
2 and 
p
e
1
= -
1.5
-
j
2 and excitation zero is at 
z
e
1
= -
1.5.
The pole-zero plots are shown in Fig. 13.5-2.
2
x
(–1.5, 2)
o
(–1.5, 0)
x
(–1.5, –2)
(b)
–2
Re(
s
)
–1
Im(
s
)
2
x
(–0.2151, 1.307)
(–0.57, 0)
x
(–0.2151, –1.307)
(a)
–2
Re(
s
)
–1
Im(
s
)
x
o
(–1.5, 0)
x
(–1.5, –2)
(–0.57, 0)
x
(–1.5, 2)
2
x
(–0.2151, –1.307)
x
(–0.2151, 1.307)
(c)
–2
Re(
s
)
–1
Im(
s
)
x
Fig. 13.5-2 
Pole-zero plots in Example: 13.5-1 (a) for System Function (b) for excitation 
function (c) for output function
13.6 
method of partIal fractIons for InvertIng laplace transforms
Any Laplace transform can be inverted by evaluating the synthesis integral in Eqn. 13.2-2 on a suitably 
selected vertical line extending from 
-∞
to 

in the 
s
-plane within the ROC of the transform being 
inverted. However, simpler methods based on Residue Theorem in Complex Analysis exist for special 
Laplace transforms. We do not take up the detailed analysis based on Residue Theorem here. However, 
the reader has to bear in mind the fact that the ‘
method of partial fractions
’ for inverting certain special 
types of Laplace transforms is based on Residue Theorem in Complex Analysis.
Linear time-invariant circuits are described by linear constant-coefficient ordinary differential 
equations. All the coefficients are real. Such a circuit will have only real-valued natural frequencies or 
complex-conjugate natural frequencies. Thus, the impulse response of such a circuit will contain only 
complex exponential functions. Each complex exponential function will have a Laplace transform of 
the form 
k
s s
o
-
where 
s
o
is the complex frequency of that particular term. Laplace transformation is a 


13.14
Analysis of Dynamic Circuits by Laplace Transforms
linear operation. Hence, Laplace transform of the sum of impulse response terms will be the sum of 
Laplace transform of impulse response terms. Therefore, Laplace transform of impulse response of a 
linear time-invariant circuit will be the sum of finite number of terms of the 
k
s s
o
-
type. Such a sum 
will finally become a ratio of rational polynomials in 
s
. The order of denominator polynomial will be 
the same as the number of first-order terms of 
k
s s
o
-
type that entered the sum.
Many of the normally employed excitation functions in linear time-invariant circuits are also of 
complex exponential nature. Input functions that can be expressed as linear combinations of complex 
exponential functions will have Laplace transforms that are ratios of rational polynomials in 
s
as 
explained in the last paragraph. 
Product of Laplace transforms that are ratios of rational polynomials in 
s
will result in a new 
Laplace transform which will also be a ratio of rational polynomials in 
s
. Hence, the Laplace transform 
of output of a linear time-invariant circuit excited by an input source function, that can be expressed 
as a linear combination of complex exponential functions, will be a ratio of rational polynomials in 
s
.
A Laplace transform that is in the form of a ratio of rational polynomials in s can be inverted by 
the method of partial fractions.
Let 
Y
(
s


Q
(
s
)/
P
(
s
) be such a Laplace transform. Let the degree of denominator polynomial be 
n
and that of numerator be 
m
. The degree of numerator polynomial will usually be less than 
n
. If 
the Laplace transform of output of a linear time-invariant circuit shows 
n

m
, it usually implies 
that the circuit model
 
employed to model physical processes has been idealised too much. We 
assume that 
m
<
n
in this section. If 
m
is equal to 

or more than 
n, 
then 
Y
(
s
) can be written as 
Y s
k s
k
Q s
P s
m n
m n
( )
( )
( )
=
+ +
+ ′


1
, and we employ method of partial fractions on 

Q s
P s
( )
( )
only.
Let 
p
1

p
2
,…, 
p
n
be the 
n
roots of denominator polynomial. They may be real or complex. If there is 
a complex root, the conjugate of that root will also be a root of the polynomial. We identify two cases. 
In the first case all the 
n
roots (
i.e.,
poles of 
Y
(
s
)) are distinct.
Case-1 All the 
n
roots of 
P
(
s
) are distinct
Then we can express 
Y
(
s
) as a sum of first-order factors as below.
Y s
A
s p
A
s p
A
s p
n
n
( )
(
) (
)
(
)
=

+

+ +

1
1
2
2
(13.6-1) 
Each term in this expansion is a partial fraction. The value of 
A
i
appearing in the numerator 
of 

th
Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   383   384   385   386   387   388   389   390   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish