Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet212/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   208   209   210   211   212   213   214   215   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

V
S
=
325 
∠-
90
°
V. The circuit in time-
domain and circuit in phasor domain are shown in Fig. 7.6-1.


7.20
The Sinusoidal Steady-State Response
i
1
+
1 H
(a)

100 

325 sin100
t
V
π
I
1
+
(b)

j
314.15 

325

–90°
100 

Fig. 7.6-1 
(a) The circuit in time-domain and (b) The phasor equivalent 
circuit for Example 7.6-1 
This is a single mesh circuit and the mesh current 
I
1
is identified in the phasor equivalent circuit in 
Fig. 7.6-1 (b). The mesh equation is obtained as
(100 

j314.15)
I
1
= 325 
∠-
90
°
Solving for 
I
1
, we get,
I
1
325
90
100
314 15
325
90
329 7 72 34
0 986
162 3
=
∠ −
+
=
∠ −

=
∠ −
°
°
°
(
. )
.
.
.
.
j
44
°
A
Going back to time-domain by inverse phasor transformation, we get,
i t
t
t
1
0 986
100
162 34
0 986
100
90
72 34
( )
.
cos(
.
)
.
cos(
.
)
=

°
=
− ° −
°
p
p
A
A
A
=

°
0 986
100
72 34
.
sin(
.
)
p
t
The source voltage and circuit current waveforms are shown in Fig. 7.6-2 (a) and (b).
The current waveform as drawn in (a) is wrong. Remember that we have obtained the sinusoidal 
steady-state solution only and not the complete circuit solution for all t > 0. Sinusoidal steady-state 
gets established only in the long run. The time taken for that will depend on circuit parameters. We 
will learn how to estimate the time required for a given circuit to reach sinusoidal steady-state in 
later chapters. We may accept the fact that it takes about 5L/R seconds (i.e., about 50 ms in this 
circuit) for an R
-
L circuit to reach steady-state. Therefore, strictly speaking, the sinusoidal steady-
state waveforms should be marked in time-axis as shown in Fig. 7.6-2 (b). It is understood that the t 
used in the axis marking in (b) can have any value greater than 50 ms or so.
400
(V)
v
S
(
t
)
i
1
(
t
)
300
200
100
–100
1.5
1
0.5
–0.5
–1
–1.5
(A)
t
in ms
10
20
30
40
(a)
–200
–300
400
(V)
v
S
(
t
)
i
1
(
t
)
300
200
100
–100
1.5
1
0.5
–0.5
–1
–1.5
(A)
t
in ms
t
+ 10
t
+ 20
t
+ 30
t
+ 40
t
(b)
–200
–300
Fig. 7.6-2 
Source voltage and circuit current waveforms in Example 7.6-1 with 
(a) Misleading time-axis marking (b) Correct time-axis marking


Sinusoidal Steady-State Response from Phasor Equivalent Circuit 
7.21
The waveform as shown in (a) is wrong from another point of view too. We remember that the 
voltage applied to the circuit was zero prior to t 
=
0. According to (a), the current suddenly changed 
from zero to a –ve value at t 
=
0. It is true that this value of current will exist in the circuit whenever 
voltage goes through a positive-going zero-crossing once the circuit has reached steady-state. But the 
current cannot do that at the first zero-crossing of voltage itself since it will be the violation of law 
of causality then. How did the circuit know while it was at t 
=
0 that the zero voltage that it is being 
subjected to at that instant is somehow different from the zero voltage that it was subjected to at the 
prior instants? Could it have anticipated that the voltage is going to rise and could it have raised its 
current instantaneously as per its anticipation about what the voltage waveform is going to do in future 
after t 
=
0 while it was at t 
=
0? No physical system can do that sort of a thing. All physical systems 
are non-anticipatory. The last sentence is yet another form of law of causality. Hence the current 
waveform as shown in (a) violates law of causality.
We note from this example that (i) the impedance of an R
-
L circuit has positive angle which is 
tan
-
1
(
w
L/R) in general (ii) the current in an R
-
L circuit lags the voltage waveform under steady-state 
conditions by tan
-
1
(
w
L/R) in general.
Average power delivered to resistor 
=
(I
1rms
)
2
R 
=
(0.986/

2)
2
×
100 
=
48.6 W
Average power delivered to the resistor can also be calculated by calculating the power delivered 
by the voltage source minus the average power delivered to the inductor. The first quantity is given by 
0.5V
m
I
1m
cos
q
where 
q
is the phase angle by which the voltage phasor leads the current phasor. The 
angle in this case is 

72.34
°
. Therefore average power delivered by the source is 0.5 
× 
325 
× 
0.986 
× 
cos(72.34
°

=
48.6 W. 
The voltage phasor across the inductor 
=
j314.15 
×
0.986 
∠-
162.34
°
=
309.75 
∠-
72.34
°
V.
\
Voltage across inductor 
=
309.75 cos(100
p
t –72.34
°

=
310.34 sin(100
p
 t 

17.66
°
) V.
\
The phase angle between inductor voltage and current 
=

17.66
°
– (
-
72.34
°

=

90
°
This is the expected value since the voltage across an inductor is expected to lead ahead of its 
current under sinusoidal steady-state. Since cosine of 90
°
is zero, the average power delivered to the 
inductor under sinusoidal steady-state condition is zero. Therefore, the average power delivered to the 
resistor is the same as the average power delivered by the voltage source and is equal to 48.6 W.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   208   209   210   211   212   213   214   215   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish