Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet164/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   160   161   162   163   164   165   166   167   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 5.1-5
Find the power dissipated in the resistor R
2
in the circuit in Fig. 5.1-10 by applying Superposition 
Theorem.
10 V
2 A
5 V
R
1
2
v
x
v
x
+
+
+
+




R
3


R
2




Fig. 5.1-10 
Circuit for Example 5.1-5
Fig. 5.1-8 
Circuit for Example 5.1-4
3 A
V
6 A
+













Star–Delta Transformation Theorem 
5.11
Solution
We find the current through R
2
by applying 
Superposition Theorem first. The single-source 
circuit when the first voltage source is acting is shown 
in Fig. 5.1-11.
This circuit is solved by KVL in the first mesh. Let 
the first mesh current be i
1
. Then v
x
=
2//2 i
1
=
i
1
.
-
10

2i
1

2i
1

i
1
=


i
1
=
2A, and hence 
i 
=
1 A
The single-source circuit when the second voltage source is acting alone is shown in circuit of
Fig. 5.1-12 (a).
(a)
5 V
R
1
i
2
v
x
v
x
i
1
i
2
+
+
+





R
3


R
2


R
v
1
(b)
2 A
R
1
R
2
i
2
v
x
v
x
+
+




R
3




Fig. 5.1-12 
Circuits with only (a) the second voltage source acting and (b) only the 
current source is acting in Example 5.1-5
This circuit is solved by mesh analysis. The controlling variable v
x
of the dependent source is 2i
2.
The mesh equations are 
− +
+

=
− +
+ =
2
4
2
0
2
2
5 0
1
2
1
2
2
1
2
i
i
i
i
i
i
i
(
)
(
)
Simplifying the equations lead to 2
0
2
4
5
1
2
1
2
i
i
i
i
+ =

+
= −
and 
. Solving these we get i
1
=
0.5 A 
and i
2
=
-
1 A. Therefore, i 
=
i
1
-
i
2
=
1.5 A.
The circuit in Fig. 5.1-12 (b) shows the single-source circuit when only the current source is acting. 
This circuit is solved by nodal analysis. The node voltage v
1
is assigned as shown in circuit diagram. 
The controlling variable of dependent source is same as v
1
. Therefore,

the potential
at the right end of 
R
1
is 3v
1
with respect to the reference node. Writing KCL at the top node, 0.5v
1
+
0.5v
1
+
0.5
× 
3v
1
=
2

2.5 v
1
=


v
1
=
0.8 V. Therefore, i 
=
0.4 A.
Therefore the current in R
2
when all the three sources are acting simultaneously is 
=

+
1.5 
+
0.4 
=
2.9 A
Therefore, the power dissipated in R
2
=
2
× 
2.9
2
=
16.82 W.
5.2 
Star–deLta tranSformatIon theorem
(a)
R
(b)
R
(c)
R
Fig. 5.2-1 
Circuit in which Start-Delta Transformation will be helpful
Fig. 5.1-11 
Circuit with only the first 
voltage source acting in 
Example 5.1-5
10 V
R
1
i
2
v
x
v
x
+
+
+



R
2


R
3






5.12
Circuit Theorems
We observe from the examples on application of Superposition Theorem in the last section 
that we may have to use nodal analysis and mesh analysis often to solve the single-source circuits. 
However, we can expect to avoid these procedures in the case of circuits involving only resistors and 
independent sources. We will be able to solve the single-source circuits by employing series and 
parallel equivalents repeatedly. However, there is one pair of resistor connections that will not yield to 
this kind of approach. For instance, consider the problem of finding the current through the resistor R 
in circuit of Fig. 5.2-1 (a) by applying superposition principle. The relevant single-source circuits are 
shown in Fig. 5.2-1 (b) and (c).
This problem cannot be solved by series–parallel equivalents. The T-shaped (also called Y-shaped 
or Star-connected) resistor network containing three resistors makes it impossible to apply series–
parallel reduction. Equivalently, the three outer resistors which are connected in 
P
 form (also called 
Delta-connected, mesh-connected etc.) makes it impossible to apply series–parallel reduction.
It turns out that a Y-connected set of three resistors can be replaced with a 
D
-connected set of 
three resistors without any circuit variable outside these three resistors getting affected. Similarly, a 
set of three resistors connected in 
D
can be replaced with a set of resistors connected in Star without 
affecting the circuit solution in the remaining portion of the circuit. We develop equations for this 
transformation in this section.
First, we consider Star–Delta Transformation. We want the two resistor networks shown in Fig. 
5.2-2 to be equivalent with respect the external network.
R
a
R
b
R
ac
R
ab
R
bc
R
c
C
C
S
A
A
B
B
Fig. 5.2-2 
Circuits related to Star–Delta Transformation
The net effect of the external network on the star connected resistor may be modelled by two 
current sources driving it as shown. If the second network that is connected in delta produces same 
node voltages at node-A and node-B with respect to node-C when driven by the same two current 
sources as the star network, the external circuit solution will not be affected in any sense. This is so 
since node voltage variables in a circuit decide all other voltages and currents in a circuit. If the node 
voltage variables do not get affected, then no voltage or current in the circuit gets affected. Therefore, 
we can derive the values for resistors in delta network in terms of resistor values in star network by 
imposing the condition that v
A
and v
B
with respect to node-C must be the same in both circuits when 
driven by same current sources.
Let I
1
and I
2
be the current source functions. Then v
A
and v
B
in star circuit is given by 
G
G
G
G
G
G
G
G
G
v
v
v
I
I
a
a
b
b
a
b
a
b
c
A
B
S
0
0
0
1
2




+
+




















=










We do not need the node voltage at the node-S. We eliminate it easily since there is no current 
source injection at that node.


Star–Delta Transformation Theorem 
5.13


+
+
+
=
∴ =
+
+
+
+
+
G v
G v
G
G
G v
v
G
G
G
G
v
G
G
G
G
v
a A
b B
a
b
c
S
S
a
a
b
c
a
b
a
b
c
b
(
)
0
Substituting the expression for v
S
in the first two node equations, rearranging terms and expressing 
the final equations in matrix form, we get
G G
G
G
G
G
G G
G
G
G
G G
G
G
G
G G
G
a
b
c
a
b
c
a
b
a
b
c
a
b
a
b
c
b
a
c
(
)
(
) (
)
(
)
(
)
+
+
+

+
+

+
+
+
((
)
G
G
G
v
v
I
I
a
b
c
A
B
+
+

















 =






1
2
(5.2-1)
Now we write the node equation for the delta-connected network:
G
G
G
G
G
G
v
v
I
I
ac
ab
ab
ab
ab
bc
A
B
+


+











 =






1
2
(5.2-2)
Equations 5.2-1 and 5.2-2 should result in same v
A
and v
B
for network equivalence. This requires 
that the two nodal conductance matrices be equal. Therefore,
G
G G
G
G
G
G
G G
G
G
G
G
G G
G
G
G
G G
G
ab
a
b
a
b
c
ac
a
b
c
a
b
c
a
c
a
b
c
a
c
a
=
+
+
=
+
+
+

+
+
=
+
(
)
G
G
G
G
G G
G
G
G
G
G G
G
G
G
G G
G
G
G
b
c
ac
b
a
c
a
b
c
a
b
a
b
c
a
c
a
b
c
+
=
+
+
+

+
+
=
+
+
(
)
(5.2-3)
Expressing this in terms of resistances,
R
R R
R R
R R
R
R
R R
R R
R R
R
R
R R
R R
R R
ab
a
b
b
c
c
a
c
ac
a
b
b
c
c
a
b
bc
a
b
b
c
c
a
=
+
+
=
+
+
=
+
+
R
R
a
(5.2-4)
Equation 5.2-4 shows how the resistance values for equivalent delta may be calculated from 
resistance values used in star network.
Figure 5.2-3 shows the Star–Delta Transformation in a way that makes the symmetry in the 
equations evident.


5.14
Circuit Theorems
R
c
R
a
R
b
C
S
A
B
R
c
R
a
R
b

R
b
R
c

R
c
R
a
R
b
R
a
R
b

R
b
R
c

R
c
R
a
R
a
R
a
R
b

R
b
R
c

R
c
R
a
Fig. 5.2-3 
Star–Delta Transformation equations
The Delta–Star Transformation may similarly be derived using an approach based on mesh analysis. 
Assume that a pair of independent voltage sources drive both circuits. Then the currents drawn from 
the sources must be the same in both circuits. The delta network will have three meshes; however, 
the central mesh has no voltage source in it and hence its mesh current can be eliminated by using 
the technique we employed in this section. The details of this derivation are skipped and the result is
given as 
R
R R
R
R
R
R
R R
R
R
R
R R
R
R
R
a
ab
ac
ab
bc
ac
b
ab
bc
ab
bc
ac
ac
bc
ab
bc
a
=
+
+
=
+
+
+
+
,
,
cc
(5.2-5)
Equation 5.2-5 shows how the resistance values of the equivalent star network may be obtained 
from the delta network resistances and Fig. 5.2-4 shows this in a manner that makes the symmetry in 
these equations evident.
R
ac
R
bc
R
ab
A
B
S
C
R
ab

R
bc

R
ac
R
ac
R
bc
R
ab

R
bc

R
ac
R
ab
R
ac
R
ab

R
bc

R
ac
R
ab
R
bc
Fig. 5.2-4 
Delta–star Transformation equations
Star–Delta (also called Y
- D
or T

P
transformation) Transformation is widely employed in 
analysis of three-phase ac circuits. A case of special interest is that of equal resistors in all limbs of 
star or delta. The equations for this special case are shown in Fig. 5.2-5.


Star–Delta Transformation Theorem 
5.15
R
R
R

R

R

R
R
R
R
R
3
R
3
R
3
Fig. 5.2-5 
A special case of Star–Delta Transformation and Delta–Star 
Transformation

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   160   161   162   163   164   165   166   167   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish