Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet142/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   138   139   140   141   142   143   144   145   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

Z
ZI
DU
=
where 
Z
is called the Mesh Resistance Matrix
I
 
is called the Mesh Current Vector
U
 is called the Input 
Vector and 
D
is called the Input Matrix.
Note that the order of Mesh Resistance Matrix is (b

n

1) 
×
(b

n

1) and that it is symmetric
The diagonal element of 
Z
-matrix , z
ii
, is the sum of resistances appearing in the mesh-i. The off-
diagonal element of 
Z
-matrix , z
ij
, is the negative of sum of all resistances appearing in common 
between mesh-i and mesh-j. There can be more than one resistance shared between two meshes. 
Then, they will be in series and they will add in z
ij
. That is why z
ij
should be the negative of sum 
of all resistances shared by mesh-i and mesh-j. The right-hand side product 
DU
is a column vector 
of net voltage rise imparted in the mesh by the independent voltage sources in the corresponding 
meshes.
Now, we can write down this matrix equation by inspection after skipping all the intermediate 
steps. The following matrix equation results in the case of the example we considered in this section.
R
R
R
R
G
V
V
V
V
1
2
3
4
5
1
2
3
4
2
3
1
1
4
5
6
2
11
5
3
=
=
=
=
=
=
=
=
= −






;
;
;
;
;
V;
V;
V;
V
00
3
5
1
0
1
5
1
4
13
1
2
3























=











i
i
i
Solving the matrix equation by Cramer’s rule, we get, i
1
=
1 A, i
2
=
2 A and i
3
=
3 A. The element 
currents can be obtained by applying KCL at various nodes in the circuit. This can be done by 
inspection. Resistor voltages may then be obtained by applying Ohm’s law. The complete solution of 
the circuit is shown in Fig. 4.7-5.


4.32
Nodal Analysis and Mesh Analysis of Memoryless Circuits
+

+

+
+
+



+
+


+

+

6 V
3 V
2 A
1 A
1 A
1 A
1 V
5 V
2 V
2 V
12 V
2 V
–11 V
V
1
V
2
V
3
V
4
3A
3 A
2A
1A
Fig. 4.7-5 
Complete mesh analysis solution for the circuit in Fig. 4.7-4 
This section has shown that an n-node, b-element circuit containing only linear resistors and 
independent voltage sources will have a Mesh representation given by 
ZI
=
DU
where 
Z
 
is the 
Mesh Resistance Matrix of order (b

n

1) 
× 
(b

n

1), 
I
is the mesh current column vector of order 
(b

n

1) 
× 
1, 
U
 
is the source voltage column vector of order n
vs
× 
1 and 
D
 
is the input matrix of order 
(b

n

1) 
× 
n
vs
n
vs
is the number of independent voltage sources in the circuit.
z
i
z
ii
th
=
sum of all resistances appearing in the mesh
iij
i
=
negative of sum of all resistances common to
tth
th
ij
th
j
d
j
mesh and 
mesh
if
voltage source is no
=
0
tt present in the mesh
if
voltage source pro
i
j
th
th
1
vvides voltage rise in the mesh
if
voltage sou
i
j
th
th

1
rrce provides voltage drop in the mesh
i
th





Equivalently, the matrix product 
DU
may be replaced by a column vector that contains the net 
voltage rise contributed to a mesh by all voltage sources participating in that mesh. The Mesh 
Resistance Matrix will be symmetric for this kind of circuits. The mesh current vector is obtained by 
Cramer’s rule or by Matrix inversion as 
I
 
=
Z
-
1
DU
.
4.7.2 
Is mesh current measurable?
Mesh current of a mesh in a planar circuit is related to the current that flows in the series combination 
of all those elements that participate only in that mesh if such elements are present in that mesh. In 
such cases, a mesh current is indeed a physical quantity and it can be measured. One can always 
introduce an ammeter in series with an element that appears only in the concerned mesh and measure 
the mesh current flowing in that mesh.
However, what if there is no wholly owned element in a particular mesh? For instance, consider the 
mesh marked as M
k
in part of a large circuit, shown in Fig. 4.7-6.
This mesh in circuit Fig. 4.7-6(a) has no element wholly owned by it. The mesh current i
k
assigned 
to this mesh cannot be identified as the current flowing through any of the circuit elements appearing in 
the mesh. However, let us try to create a wholly owned element in this mesh without affecting the circuit 
solution in any manner. Assume that R
2
is a member of only one mesh. Then, nothing prevents us from 
changing our viewpoint to that expressed by the circuit in Fig. 4.7-6(b). Here, we have introduced an 
additional node at the junction between R
2
and R
1
and introduced a short-circuit element in between 
the new node and the old one. Introduction of a shorting link causes no change in the circuit variables 
anywhere in the circuit. However, now we identify this newly introduced short-circuit element as the 


Mesh Analysis of Circuits with Independent Current Sources 
4.33
element exclusively owned by mesh M
k
and identify the mesh current variable i
k
as the current that 
flows in this element. We can introduce an ammeter there as shown in Fig. 4.7-6(b) and measure i
k

M
k
i
k
R
1
R
2
(a)
M
k
i
k
R
1
R
2
A
(b)
+

Fig. 4.7-6 
Circuit pertaining to measurability of mesh currents
However, even this technique will fail to make the mesh current variable i
k
measurable if R
2
is a 
member of yet another mesh. If the entire periphery of the mesh M
k
is shared by some mesh or other, 
then, a short-circuit element introduced anywhere in the periphery will be shared by some other mesh. 
Thus, we conclude that there can be meshes in which mesh current cannot be identified as the 
current flowing in any element in that mesh. Therefore, in general, mesh current is a ‘fictitious current’ 
that is not measurable directly. It is a ‘fictitious current’ that can be thought of as ‘flowing around the 
periphery of the mesh’. Element currents are measurable. Each element current is a combination of two 
‘peripheral currents’ or mesh currents. However, these peripheral currents are not always measurable.
However, the KVL equations written for meshes in a planar circuit will form a set of (b

n

1) 
independent equations quite independent of whether the mesh currents are measurable or not. 

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   138   139   140   141   142   143   144   145   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish