Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet72/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   68   69   70   71   72   73   74   75   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 2.5-1
Solve the circuit in Fig. 2.5-2 completely.
Solution
The 10 V independent voltage source across the node-pair fixes the 
terminal voltage of all elements at 10V. The current through 10 
W
Fig. 2.5-2 
Circuit for 
Example 2.5-1
5 A
10 V
10 



+

www.TechnicalBooksPDF.com


2.20
Basic Circuit Laws
will then be 10 V/10 
W
=
1 A and the current through 5 
W
will 
be 10 V/5 
W
=
2 A. These currents flow from top node to bottom 
node.
Now we apply KCL at the top node.
Current flowing into the positive polarity of 10V source 
=
5 A 

1 A 

2 A 
=
0.
\
Current flowing into the positive polarity of 10 V source 
=
2 A.
The circuit solution is marked in Fig. 2.5-3.
Power delivered by 5 A current source 
=
10 V
× 
5 A 
=
50 W
Power absorbed by 10 
W
resistor 
=
10 V
× 
1 A 
=
10 W
Power absorbed by 5 
W
resistor 
=
10 V
× 
2 A 
=
20 W
Power absorbed by 10 V current source 
=
10 V
× 
2 A 
=
20 W
Total power delivered 
=
Total power absorbed
example: 2.5-2
Find the circuit solution for the circuit in Fig. 2.5-4. 
Solution
The variable assignment and reference polarity assignment is 
shown in Fig. 2.5-5.
The terminal voltage of all elements will be v
x
with this polarity 
assignment. Now, i
1
=
v
x
/2.5 A and i
2
=
v

/5 A. Applying KCL at 
the top node, we get
i
v
i
i e
v
v
v
v
v
x
x
x
x
x
x
1
2
2 0 2
0
2 5
2
0 2
5
0
0 4
2
5
− −
+ =
− +
+
= ⇒
= ⇒
=
(
.
)
. .,
.
( .
)
.
V
Now, i
1
=
2A and i
2
=
1 A. The circuit solution is 
marked in Fig. 2.5-6.
Power absorbed by 2.5 
W
resistor 
=
5 V 
× 
2 A 
=
10 W
Power absorbed by 5 
W
resistor 
=
5 V 
× 
1 A 
=
5 W
Power delivered by 2 A current source 
=
5 V 
× 
2 A 
=
10 W
Power delivered by the dependent current source 
=
5 V
× 
1 A 
=
5 W
Total power delivered 
=
Total power absorbed 
=
15 W
2.6 
analysIs of MultI-loop, MultI-node cIrcuIts
The method of analysis of multi-loop, multi-node circuits, using element relations along with KCL 
and KVL equations, is illustrated through worked examples in this section.
Fig. 2.5-3 
Circuit solution in 
Example 2.5-1
5 A
2 A
2 A
1 A
+ +
+
+




10 



10 V
10 V
10 V
Fig. 2.5-6 
Circuit solution in 
Example 2.5-2
5 V
5 V
2 A
1 A
2.5 



2 A
5 V
5 V
+
+
+
+




–1 A
Fig. 2.5-5 
Reference polarity 
assignment in the circuit 
in Example 2.5-2
–0.2 
v
x
2.5 

2 A
v
x


+

Fig. 2.5-4 
Circuit for 
Example 2.5-2
–0.2 
v
x
i
1
i
2
2.5 

2 A
v
x


+
+
+
+




www.TechnicalBooksPDF.com


Analysis of Multi-Loop, Multi-Node Circuits 
2.21
example: 2.6-1
Find the voltage across the dependent current source (v
y
) in the circuit in Fig. 2.6-1.
Solution
This circuit has six elements, three nodes and three meshes. We 
need to find out only v
y
. Let us try to solve the circuit in terms of v
x
and v
y
without using any other new variables.
We note that v
AD
=
v
CD
+
v
AC
=
(10
-
v
x
) V.
\
v
AB
=
v
AD
– v
BD
=
(10
-
v
x
) – v
y
V.
v
BC
=
v
BD
– v
CD
=
(v
y
–10) V.
v
CA
=
v
x
V.
Note that we have essentially employed KVL in order to arrive at these relations. Now, we 
can express all the currents at node-A and node-B in terms of v
x
and v
y
. The currents going 
away from node-A are (v
AB
/3) A, (v
AD
/8) A and (
-
v
CA
/1) A. The sum of these three terms must be 
zero.

− −
+


=
10
3
10
8
1
0
v
v
v
v
x
y
x
x
The currents going away from node-B are (
-
v
AB
/3) A, (v
BC
/5) A and v
x
. Sum of these terms must 
be zero.

− + +
+
+
=
10
3
5
0
v
v
v
v
x
y
y
x
Simplifying these two equations, we get
35v
x
+
8v
y
=
110
20v
x
+
8v
y
=
80
Solving these two equations, we get v
x
=
2 V; v
y
=
5 V
Therefore, the voltage across the dependent current source 
=
5 V.
example: 2.6-2
Find the power delivered by the voltage and current sources in the 
circuit shown in Fig. 2.6-2.
Solution
We need to find out the current through the 20 V voltage 
source and the voltage across the 5 A current source. Refer to
Fig. 2.6-3.
Fig. 2.6-1 
Circuit for 
Example 2.6-1








v

A
v
x
v
y
A
D
B
C
+
+
+
10 V



Fig. 2.6-2 
Circuit for 
Example 2.6-2
+
10 

10 





5 A
20 V

www.TechnicalBooksPDF.com


2.22
Basic Circuit Laws
+
+
+
+
10 

10 





5 A
20 V
i
i
1
i
2
i
3
A
B
C




Fig. 2.6-3 
Circuit in Example 2.6-2 with variables assigned
KVL in the first mesh gives
− +
+
=

=

20 10
0
20 10
i V
V
i
AC
AC
(
) V.
∴ =

= −
i
i
i
1
20 10
5
4 2 A.
KCL has to be satisfied at node-A. 
∴ = − = − −
= −
i
i i
i
i
i
2
1
4 2
3
4
(
)
.
A
Applying KCL at node-B, we get, 
− + − = ⇒ = + =
+
i
i
i
i
i
2
3
3
2
5 0
5
3 1
(
) A
Therefore, V
BC
=
5
× 
(3

1) 
=
15i 
+
5 V.
Now we apply KVL on the outer loop of the circuit to get,
− +
+
+
=

+
+

+
+ =
=
20 10
10
0
20 10
30
40
15
5
0
55
2
i
i
V
i e
i
i
i
i e
i
BC
. .,
(
) (
)
. .,
555
1
∴ =
i
A
And, V
BC
=
15i 
+

=
20 V.
Therefore, the current delivered by the voltage source is 1 A and the voltage appearing the current 
source is 20 V.
Therefore, the power delivered by the voltage source 
=
20 V
× 
1 A 
=
20 W
The power delivered by the current source 
=
20 V
× 
5 A 
=
100 W
example: 2.6-3
Find i
x 
in the circuit
shown in Fig. 2.6-4. 
Solution
Voltage across 2 
W
resistance is 2i
x
V with positive polarity at the 
top terminal. Therefore, the current through 4 
W
is 2i
x
/4 
=
0.5i
x

from the top terminal to the bottom terminal.
Therefore, the current through 3 
W
must be 1.5i
x
A from left to 
right by KCL applied to the node at which the three resistors are 
connected.
Therefore, the voltage across 13 
W
must be 2i
x
+
3
× 
1.5i
x
=
6.5i

V.
Fig. 2.6-4 
Circuit for 
Example 2.6-3
13 







4 A
i
x
www.TechnicalBooksPDF.com


KVL and KCL in Operational Amplifier Circuits 
2.23
Therefore, the current through 13 
W
must be 6.5i
x
/13 
=
0.5i
x
A from the top terminal to the bottom 
terminal. Now, apply KCL at the current source node to get 1.5i
x
 

0.5i
x
=
4.
\
i
x
=
2A.
example: 2.6-4
Find the ratio 
v
v
o
s
in the circuit shown in Fig. 2.6-5. 
v
0
v
S
0.002 
v
0
20 k

40 k

10 k

100
+
+
+



100 k

i
x
i
x
Fig. 2.6-5 
Circuit for Example 2.6-4
Solution
The current that flows through 100 k
W
at output side is 100i
x
from the bottom terminal to the top 
terminal. Therefore, v
i
o
x
= −
10
7
V. Therefore, the voltage generated by the VCVS at input side is 
-
0.002
× 
10

i
x
=
-
2
× 
10
4
i
x
V with polarity as shown in Fig. 2.6-5.
Therefore, voltage across 40 k
W
resistance is 
=
20 10
2 10
0
3
4
×
− ×
=
i
i
x
x
V.
Therefore, current through 40 k
W
resistance is 
=
0 A.
Applying KVL in the first mesh, we get, voltage drop across 10k
W
=
v
s
V.
Therefore, current through 10 k
W
resistance 
=
10
-

v
s
A
Current through 40 k
W
is zero. Therefore, by KCL, i
x
=
10
-

v
s
A.
We know that v
i
o
x
= −
10
7
V.
v
i
v
v
v
v
o
x
s
s
o
s
= −
= −
×
= −

= −

10
10
10
1000
1000
7
7
4

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   68   69   70   71   72   73   74   75   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish