Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet80/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   76   77   78   79   80   81   82   83   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

the Inverting summer
The circuit of Inverting Summer is shown in Fig. 2.7-7.
+
v
2
v
1
R
1
R
2
R
F
+
+
+
+
+
0 V
0 A






v
2
R
2
v
1
R
1
+
v
2
R
2
v
1
R
1
v

+
v
2
R
F
R
2
R
F
R
1
v

= – v

+
v
2
R
F
R
2
R
F
R
1
Fig. 2.7-7 
The inverting summer amplifier circuit
The inverting input terminal is at virtual ground. Therefore, the currents through R
1
and R
2
are 
v
1
/R
1
and v
2
/R
2
, respectively. These two currents add at the inverting node and flow into the feedback 
resistor R
F
, producing a voltage drop of v
1
(R
F
/R
1

+
v
2
(R
F
/R
2
) across it. Therefore, the output voltage 
is 
-
[v
1
(R
F
/R
1

+
v
2
(R
F
/R
2
)]. 
The circuit acts as an inverter summer if R
1
=
R
2
=
R
F
=
R. Then the output voltage will be 
-
(v
1
+
v
2
).
More than two sources can be connected to summer in the same manner. Essentially, the virtual 
ground at inverting input terminal results in a voltage to current conversion in all source lines. The 
inverting input acts as a summing node where all the input line currents get added. The sum current 
gets pushed into the feedback resistor since Opamp input terminal does not draw any current.
the non-Inverting summer amplifier
The non-inverting summer amplifier with three inputs is shown in Fig. 2.7-8.
The gain from non-inverting input terminal to the output terminal will be 1
+
(k
-
1)R/R 
=
k. We 
need to find the potential at non-inverting input terminal in terms of v
1
v
2
and v
3
in order to obtain an 
expression for v
o
in terms of the source voltages. The node potential at non-inverting input is marked 
as v. Applying KCL at this node and using the principle of zero input current, we get the following 
node equation, where the G’s represent the conductance values.
www.TechnicalBooksPDF.com


2.32
Basic Circuit Laws
R
1
R
2
R
3
R
v
1
v
2
v
3
v
v
o
+
+
+
+
+
+
(
k
– 1)
R
0 V
0 A






Fig. 2.7-8 
The non-inverting summer amplifier circuit
G v v
G v v
G v v
i e v G
G
G
G v
G v
G v
1
1
2
2
3
3
1
2
3
1 1
2 2
3
0
(
)
(
)
(
)
. ., [
]

+

+

=
+
+
=
+
+
33
1 1
2 2
3 3
1
2
3
∴ =
+
+
+
+
v
G v
G v
G v
G
G
G
Therefore, the output, v
o
=
+
+
+
+
+
+
+
+
kG
G
G
G
v
kG
G
G
G
v
kG
G
G
G
v
1
1
2
3
1
2
1
2
3
2
3
1
2
3
3
If there are n inputs connected at the input, the equation for v
o
gets generalised to
v
k
G v
o
G
j
i i
i
n
j
n
=

=
=

1
1
V.
If all the input resistors are equal and k 
=
n, then the circuit performs the addition function without 
any gain, 
i.e., 
v
v
o
i
i
n
=
=

1
V.
It may be observed that the gain for each source voltage is dependent on the conductance values 
of resistors in all source lines. Hence, addition of an extra source will affect the gain for all other 
sources. The inverting summer circuit does not suffer from this shortcoming, thanks to the inverting 
input terminal acting as a summing node for currents.
If one can spend two Opamps, an inverting 
summer followed by an inverting amplifier 
with a gain of –1 is a better solution than the 
non-inverting summer.
the subtractor circuit
The Subtractor Circuit is shown in Fig. 2.7-9.
The principle of zero input current is used 
to arrive at the conclusion that the potential 
dividers connected at both input terminals 
are unloaded. Therefore, the potential of 
non-inverting input terminal is kv
1
/(k
+
1).
+
+
+
v
o

k
(
v
1
– 
v
2
)
R
R
v
1
v
2
kR
kR
0 V
0 A


+
+
0 A



Fig. 2.7-9 
The subtractor circuit 
using a single Opamp
www.TechnicalBooksPDF.com


KVL and KCL in Operational Amplifier Circuits 
2.33
The potential at the inverting input terminal is the same as the potential at non-inverting input 
terminal by the principle of virtual short. Therefore, the potential at inverting terminal is kv
1
/(k
+
1) V 
with respect to ground node.
Now, we write the KCL at inverting input terminal and make use of principle of zero input current 
while writing down the equation. The KCL equation is obtained as
G
kv
k
v
G
k
kv
k
v
o
1
2
1
1
1
0
+





+
+





=
. Solving for v
o
, we get,
v
o
=
(v
1
-
v
2
). k 
=
1, if all resistors chosen are equal.
The circuit is expected to give zero output if v
1
=
v
2
. That is, its common mode gain is expected to 
be zero. However, in practice it isn’t. The reason is the invariably present deviations in the resistance 
value of resistors from their nominal values. Resistors have a tolerance factor. If the actual values of 
resistance of resistors is such that the ratio between the two resistors connected to inverting terminal 
is different from the ratio of resistors connected at the non-inverting terminal, the common mode gain 
of the circuit will not be zero. This circuit is also called differential amplifier. The input resistance 
offered to the sources depends on the value of R used in the circuit. The performance of this circuit in 
amplifying voltage difference is satisfactory for less stringent applications. 
example: 2.7.1
Find the value of V in the circuit in if the output is 
observed to be 0 V.
Solution
This is a non-inverting amplifier of gain 
=
+
=
1
9
10
R
R
. The output voltage will be 10 times the 
voltage at non-inverting pin with respect to ground. 
If the output is seen to be zero, then the voltage at 
non-inverting input must be 0 V.
Input terminals of Opamp do not draw current. 
Hence, the 2 mA delivered by the current source will flow through 10 k resistor. Therefore, the voltage 
at the non-inverting pin is 

10 k
× 
2 mA 
=
(V 
+
2) V. V has to be 
-
2 V for this to become 0 V.
example: 2.7.2
Find the output voltage in the Opamp circuit in Fig. 2.7-11.
Solution
Inverting pin is at the same potential as that of the 
non-inverting pin by virtual short principle. Therefore, 
inverting pin is at 2 V. Hence, the voltage drop across 
1 k resistor is (v
S
(t) – 2) V. Therefore, the current that 
comes to inverting pin from 1 k resistor line is (v
S
(t) – 2) 
mA. The current source delivers 4 mA to the same pin. 
Inverting pin of Operational Amplifier does not draw any 
+

v
o
9
R
10
k
R
V

+
2mA

+
Fig. 2.7-10 
Circuit for Example 2.7.1

+
+

v
o
9
R
1
k
10
k
R
V
s
(
t
)

+

+
4mA
2V
Fig. 2.7-11 
Circuit for 
Example 2.7.2
www.TechnicalBooksPDF.com


2.34
Basic Circuit Laws
current. Therefore, the current that goes into 10 k will be [4 

(v
S
(t) – 2)] 
=
(v
S
(t
+
2) mA. Therefore, 
drop across 10 k will be (10v
S
(t
+
2) V. The inverting pin is at 2 V. Therefore, the output voltage 
=
2 V
-
(10v
S
(t
+
2) V 
=
-
10 v
S
(t) V.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   76   77   78   79   80   81   82   83   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish