8.217.
C
x
x
x
x
1
ln
24
24
6
4
12
12
6
4
8.218.
1
1
,
1
1
ln
1
2
2
x
x
t
C
t
t
t
t
8.219.
C
x
arctg
x
x
x
6
6
6
5
6
6
2
5
6
8.220.
C
x
x
arctg
3
2
6
2
3
6
8.221.
C
x
x
x
1
2
ln
6
2
6
2
3
6
6
3
8.222.
4
3
5
1
,
3
8
5
8
x
z
C
z
z
8.223.
2
/
1
3
/
2
3
1
3
x
t
C
t
t
8.224.
C
x
x
x
x
x
3
3
5
6
5
2
3
2
5
18
11
72
4
8.225.
C
x
x
x
3
4
16
5
4
8
7
4
2
/
3
2
2
/
5
2
2
/
7
2
8.226.
x
x
z
C
z
arctg
z
z
z
3
2
2
1
3
1
2
3
1
1
1
ln
6
1
8.227.
x
x
t
C
t
t
t
arctg
t
t
3
2
2
1
1
ln
3
1
3
1
2
3
1
1
ln
6
1
8.228.
C
x
x
x
x
2
/
1
2
2
/
3
2
2
/
5
2
2
/
7
2
1
1
1
5
3
1
7
1
8.229
C
x
x
x
x
x
3
2
2
2
3
1
1
1
8.230.
C
x
arctg
x
x
4
3
4
3
4
3
1
3
2
1
1
1
1
ln
3
1
Aniq integralga keltiriluvchi masalalar. Aniq
integralning ta’rifi va uning asosiy xossalari. Nyuton-
Leybnits formulasi. Aniq integralda o’zgaruvchini
almashtirish. Bo’laklab integrallash.
ANIQ INTEGRAL
§ 9.1. Aniq integralni hisoblash
1.
[a,b]
kesmada
x
f
funksiya aniqlangan bo’lsin. [
a
,b]
oraliqni
b
x
x
x
a
n
...
1
0
nuqtalar
bilan n ta
bo’laklarga ajrataylik. Har bir [
i
i
x
x
,
1
] kesmadan bittadan
i
i
i
i
x
x
1
nuqta olib,
n
i
i
i
x
f
J
1
yig’indi
tuzamiz,
bunda
1
i
i
i
x
x
x
.
J
-ko’rinishdagi yig’indi,integral yig’indi deyiladi.
Uning
0
max
i
x
dagi
limiti, (u mavjud va chekli bo’lsa)
x
f
funksiyaning
a
dan
b
gacha aniq
integrali deyiladi hamda
b
a
n
i
i
i
x
x
f
dx
x
f
i
1
0
max
lim
(9.1)
ko’rinishida yoziladi.
2
.Aniq integralning xossalari.
1)
const
dx
x
f
dx
x
f
b
a
b
a
;
; (9.2)
2)
b
a
b
a
b
a
dx
x
g
dx
x
f
dx
x
g
x
f
; (9.3)
3)
a
b
b
a
dx
x
f
dx
x
f
; (9.4)
4)
0
a
a
dx
x
f
; (9.5)
5)
b
c
c
a
b
a
dx
x
f
dx
x
f
dx
x
f
; (9.6)
6) Agar
x
f
y
funksiya [
a
,b] kesmada uzluksiz bo’lsa, u holda
b
a
,
topiladiki,
a
b
f
dx
x
f
b
a
; (9.8)
bo’ladi.
8) Agar
x
f
y
juft funksiya bo’lsa, u holda
a
a
a
dx
x
f
dx
x
f
0
2
; (9.8)
8) Agar
x
f
y
toq funksiya bo’lsa, u holda
0
a
a
dx
x
f
(9.9)
3.
Aniq
integral Nyuton-Leybnits
a
F
b
F
x
F
dx
x
f
b
a
b
a
(9.10)
formulasi orqali hisoblanadi.
4
.
b
a
dx
x
f
integralni hisoblash uchun
t
t
x
,
almashtirishni qo’llaymiz. Agar [
;
] kesmada
t
f
t
t
x
,
,
funksiyalar uzluksiz va
b
a
,
bo’lsa,
quyidagi
dt
t
t
f
dx
x
f
b
a
(9.11)
tenglik o’rinli.
5.
[a,b] kesmada
x
x
u
u
,
funksiyalar uzluksiz hosilalarga ega bo’lsa, quyidagi bo’laklab integrallash
formulasi o’rinli bo’ladi:
b
a
b
a
b
a
du
u
ud
(9.12)
“
A”guruh
Integrallarni hisoblang (Nyuton – Leybnis formulasini qo’llash yo’li bilan).
9.1
а
)
1
0
2
1
x
xdx
в
)
dx
x
1
0
1
9.2
1
2
2
5
11
x
dx
9.3
13
2
5
4
3
x
dx
9.4
3
0
1
1
dy
y
y
9.5
dt
T
t
T
2
/
0
0
2
sin
9.6
16
0
9
x
x
dx
9.8
dx
e
e
x
x
1
0
4
1
9.8
2
0
0
26
3
a
b
x
dx