C++ Neural Networks and Fuzzy Logic: Preface


C++ Neural Networks and Fuzzy Logic



Download 1,14 Mb.
Pdf ko'rish
bet359/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   355   356   357   358   359   360   361   362   ...   443
Bog'liq
C neural networks and fuzzy logic

C++ Neural Networks and Fuzzy Logic

by Valluru B. Rao

MTBooks, IDG Books Worldwide, Inc.



ISBN: 1558515526   Pub Date: 06/01/95

Previous Table of Contents Next



C++ Implementation of Kohonen’s Approach

Our C++ implementation of this algorithm (described above) is with small modifications. We create but do

not destroy neurons explicitly. That is, we do not count the number of consecutive iterations in which a

neuron is not selected for modification of weights. This is a consequence of our not defining a neighborhood

of a neuron. Our example is for a problem with five neurons, for illustration, and because of the small number

of neurons involved, the entire set is considered a neighborhood of each neuron.

When all but one neuron are created, the remaining neuron is created without any more work with the

algorithm, and it is assigned to the input, which isn’t corresponded yet to a neuron. After creating n – 1

neurons, only one unassigned input should remain.

In our C++ implementation, the distance matrix for the distances between neurons, in our example, is given as

follows, following the stipulation in the algorithm that these values should be integers between 0 and n – 1.

         0 1 2 3 4

         1 0 1 2 3

d =    2 1 0 1 2

         3 2 1 0 1

         4 3 2 1 0

We also ran the program by replacing the previous matrix with the following matrix and obtained the same

solution. The actual distances between the cities are about four times the corresponding values in this matrix,

more or less. We have not included the output from this second run of the program.

        0 1 3 3 2

        1 0 3 2 1



d =   3 3 0 4 2

        3 2 4 0 1

        2 1 2 1 0

In our implementation, we picked a function similar to the Gaussian density function as the squashing

function. The squashing function used is:

f(d,») = exp( −d

2

/») /  (2 )




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   355   356   357   358   359   360   361   362   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish