C++ Neural Networks and Fuzzy Logic: Preface


x 3  = w 23 x



Download 1,14 Mb.
Pdf ko'rish
bet26/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   22   23   24   25   26   27   28   29   ...   443
Bog'liq
C neural networks and fuzzy logic

x

3

 = w


23

x

2

 + w



13

x

1

x

5

 = w


35

x

3

 + w



45

x

4

We will formalize the equations in Chapter 7, which details one of the training algorithms for the



feed−forward network called Backpropagation.

Note that you present information to this network at the leftmost nodes (layer 1) called the input layer. You

can take information from any other layer in the network, but in most cases do so from the rightmost node(s),

which make up the output layer. Weights are usually determined by a supervised training algorithm, where

you present examples to the network and adjust weights appropriately to achieve a desired response. Once you

have completed training, you can use the network without changing weights, and note the response for inputs

that you apply. Note that a detail not yet shown is a nonlinear scaling function that limits the range of the

weighted sum. This scaling function has the effect of clipping very large values in positive and negative

directions for each neuron so that the cumulative summing that occurs across the network stays within

reasonable bounds. Typical real number ranges for neuron inputs and outputs are –1 to +1 or 0 to +1. You will

see more about this network and applications for it in Chapter 7. Now let us contrast this neural network with

a completely different type of neural network, the Hopfield network, and present some simple applications for

the Hopfield network.


Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   22   23   24   25   26   27   28   29   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish