Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application


Types of "Naïve Bayes classifier"



Download 1,94 Mb.
Pdf ko'rish
bet61/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   57   58   59   60   61   62   63   64   ...   96
Bog'liq
2021272010247334 5836879612033894610

Types of "Naïve Bayes classifier" 
“Multinomial Naïve Bayes” - This is widely used to classify
documents, for example, which category does a document
belong: 
beauty, 
technology, 
politics, 
and 
so 
on.
The frequency of the phrases in the document is considered as the
features or predictors of the classifier.


“Bernoulli Naive Bayes” - This is nearly identical to the
“Multinomial Naïve Bayes”, however, the predictors used here
are the "boolean variables". For example, depending on whether
a select phrase occurs in the text or not, the parameters used to
predict the class variable can either be a yes or no value.
“Gaussian Naive Bayes” - When the predictors are not distinct
and have very similar or continuous values, it can
be assumed that these values are obtained from a Gaussian
distribution.
Applications of “Naïve Bayes”
“Real-Time Prediction”: Naive Bayes is extremely quick in
learning from the input data and can be seamlessly used to
generate predictions in real-time.
“Multi-class Prediction”: This algorithm is also widely used to
generate predictions for multiple classes at the same time. It
allows the prediction of the probability of various classes of the
target variable.
“Text classification / Spam Filtering / Sentiment Analysis”:
The “Naive Bayes classifiers” is heavily used in text
classification models owing to its ability to address problems
with multiple classes of the target variable and the rule of
autonomy. This algorithm has reported higher success rates than
any other algorithm. As a consequence, it is commonly used in
for identification of spam emails and sentiment analysis


by identifying favorable and negative consumer feelings on
the social media platforms. 

Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   57   58   59   60   61   62   63   64   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish