Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application



Download 1,94 Mb.
Pdf ko'rish
bet23/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   19   20   21   22   23   24   25   26   ...   96
Bog'liq
2021272010247334 5836879612033894610

Decision trees
One of the models that we’ll discuss later is called neural networks. They’re
the most advanced types of machine learning and are used for many
different purposes. I’ve related this to decision trees because of how
frequently people turn to neural networks for classification problems when
there are much simpler models available. Decision trees and the related
random forest models can be just as useful.
Despite the power of neural networks, they can’t be used for everything.
Fortunately, we have options, and the purpose of this book is to know what
your options are when you decide you want to build a model. The next
place to look when neural networks don’t work is decision trees. Decision
trees break data into subcategories using decision and leaf nodes in the
shape of a tree.


Decision trees have a few advantages over neural networks (discussed later
in this chapter). For one thing, neural networks require huge amounts of
data and powerful computers in order to process them. The upside to using
a decision tree is that they are relatively simple, especially when you
compare them to neural networks. Unlike most of the models in this book,
they are very easy to read a decision tree, even to the untrained eye. This
makes them a good candidate when choosing a model that needs to be
presented in front of stakeholders.
Decision trees are another form of supervised learning, meaning that we
label the categories that we want to sort before creating the model. In some
instances, decision trees can complete regression tasks, but typically they
are used as classification models. When decision trees are used for
regression, the leaf nodes end in probabilities.
Decision trees start with what’s called a root node at the top of the tree.
Then the root node is split into two nodes after the root node. Nodes are
individual leaves on the tree, and the middle nodes are where the decisions
are made, known as the decision nodes. The decision tree ends at the
bottom in what’s called a terminal node is at the bottom of a branch, where
the decision is complete.
Ideally, the decision tree will sort the data quickly, layer by layer. Because
of this, we call the model ‘greedy' because the top nodes try to sort the data
as quickly as possible so that it requires fewer layers. Like neural networks,
decision trees often suffer from overfitting. A decision tree usually won't
work with other sets of data because the sorting is so specific to each
dataset.


Below is an example of a decision tree about whether or not to grant a job
applicant a job interview determined by qualification factors. The root node
is whether or not the applicant has a college degree, followed by the
decision modes which all lead to either a decision not to hire or grant an
interview. You can see from this decision tree why this type of model is so
specific to the specific data you are working with because every data set
will have differences in qualifications and so every dataset will be sorted
differently.



Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   19   20   21   22   23   24   25   26   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish