Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application



Download 1,94 Mb.
Pdf ko'rish
bet21/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   17   18   19   20   21   22   23   24   ...   96
Bog'liq
2021272010247334 5836879612033894610

Ridge Regression. This is a technique commonly used to analyze data that
suffer from multicollinearity. Using ridge regression properly can reduce
standard errors and make your model more accurate, depending on the
characteristics of your data.
Ridge regression can be useful when your data contains independent
variables with a high correlation. If you could make a prediction about an
independent variable by using another independent variable, then your
model is at risk of multicollinearity. For example, if you are using variables


that measure a person’s height and weight; these variables are likely to
create multicollinearity in the model.
Multicollinearity can affect the accuracy of your predictions. To avoid
multicollinearity, be cognizant of the type of predictive variables you are
using. Type of data you are using, as well as the method of collection, 
could be the cause of multicollinearity. There is a chance you may not have
selected a broad enough range of independent variables. Your data points
could be too similar because your choice of independent variables is
limited.
Multicollinearity can also be caused by having a model that is too specific.
You have more variables than you have data points. If you have decided to
use a linear model, and that has made multicollinearity worse, then you can
try to apply a ridge regression technique.
Ridge regression works by allowing a little bit of bias into the model in
order to make your predictions more accurate. This technique is also known
as regularization.
Another method is to improve the model's accuracy by standardizing
independent variables. The simplest way is to change the coefficients of
some independent variables to zero to reduce complexity. However, we
won't just change them to zero, but standardization implements a system
that rewards coefficients that are nearer to zero. This will cause coefficients
to shrink, so the complexity of the model is less, but the independent
variables remain in the model. This will give the model more bias, but it's a
trade-off for more accurate predictions.



Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   17   18   19   20   21   22   23   24   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish