The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet198/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   194   195   196   197   198   199   200   201   ...   868
(7.4.7)
6
ˆ
β
3
=
y
i
x
3
i
x
2
2
i

y
i
x
2
i
x
2
i
x
3
i
x
2
2
i
x
2
3
i

x
2
i
x
3
i
2
(7.4.8)
which give the OLS estimators of the population partial regression coefficients 
β
2
and 
β
3
,
respectively.
In passing, note the following: (1) Equations (7.4.7) and (7.4.8) are symmetrical in na-
ture because one can be obtained from the other by interchanging the roles of 
X
2
and 
X
3
;
(2) the denominators of these two equations are identical; and (3) the three-variable case is
a natural extension of the two-variable case.
(7.4.3)
(7.4.4)
(7.4.5)
¯
Y
= ˆ
β
1
+ ˆ
β
2
¯
X
2
+ ˆ
β
3
¯
X
3
Y
i
X
2
i
= ˆ
β
1
X
2
i
+ ˆ
β
2
X
2
2
i
+ ˆ
β
3
X
2
i
X
3
i
Y
i
X
3
i
= ˆ
β
1
X
3
i
+ ˆ
β
2
X
2
i
X
3
i
+ ˆ
β
3
X
2
3
i
min
ˆ
u
2
i
=
(
Y
i
− ˆ
β
1
− ˆ
β
2
X
2
i
− ˆ
β
3
X
3
i
)
2
6
This estimator is equal to that of Eq. (7.3.5), as shown in App. 7A, Sec. 7A.2.
guj75772_ch07.qxd 11/08/2008 04:22 PM Page 193


194
Part One
Single-Equation Regression Models
Variances and Standard Errors of OLS Estimators
Having obtained the OLS estimators of the partial regression coefficients, we can derive
the variances and standard errors of these estimators in the manner indicated in Appen-
dix 3A.3. As in the two-variable case, we need the standard errors for two main purposes:
to establish confidence intervals and to test statistical hypotheses. The relevant formulas are
as follows:
7
var (
ˆ
β
1
)
=
1
n
+
¯
X
2
2
x
2
3
i
+ ¯
X
2
3
x
2
2
i

2
¯
X
2
¯
X
3
x
2
i
x
3
i
x
2
2
i
x
2
3
i

x
2
i
x
3
i
2
·
σ
2
(7.4.9)
se (
ˆ
β
1
)
= +
var (
ˆ
β
1
)
(7.4.10)
var (
ˆ
β
2
)
=
x
2
3
i
x
2
2
i
x
2
3
i

x
2
i
x
3
i
2
σ
2
(7.4.11)
or, equivalently,
(7.4.12)
where
r
2 3
is the sample coefficient of correlation between
X
2
and
X
3
as defined in Chapter 3.
8
se (
ˆ
β
2
)
= +
var (
ˆ
β
2
)
(7.4.13)
var (
ˆ
β
3
)
=
x
2
2
i
x
2
2
i
x
2
3
i

x
2
i
x
3
i
2
σ
2
(7.4.14)
or, equivalently,
var (
ˆ
β
3
)
=
σ
2
x
2
3
i
1

r
2
2 3
(7.4.15)
se (
ˆ
β
3
)
= +
var (
ˆ
β
3
)
(7.4.16)
cov (
ˆ
β
2
,
ˆ
β
3
)
=

r
2 3
σ
2
1

r
2
2 3
x
2
2
i
x
2
3
i
(7.4.17)
In all these formulas 
σ
2
is the (homoscedastic) variance of the population disturbances 
u
i
.
Following the argument of Appendix 3A, Section 3A.5, the reader can verify that an
unbiased estimator of 
σ
2
is given by
(7.4.18)
ˆ
σ
2
=
ˆ
u
2
i
n

3
var (
ˆ
β
2
)
=
σ
2
x
2
2
i
1

r
2
2 3
7
The derivations of these formulas are easier using matrix notation. Advanced readers may refer to
Appendix C.
8
Using the definition of 
r
given in Chapter 3, we have
r
2
2 3
=
x
2
i
x
3
i
2
x
2
2
i
x
2
3
i
guj75772_ch07.qxd 11/08/2008 04:22 PM Page 194


Chapter 7
Multiple Regression Analysis: The Problem of Estimation
195
Note the similarity between this estimator of 
σ
2
and its two-variable counterpart
[
ˆ
σ
2
=
(
ˆ
u
2
i
)
/
(
n

2)]
.
The degrees of freedom are now (
n

3) because in estimating
ˆ
u
2
i
we must first estimate 
β
1
,
β
2
, and 
β
3
, which consume 3 df. (The argument is quite
general. Thus, in the four-variable case the df will be 
n

4
.
)
The estimator 
ˆ
σ
2
can be computed from Eq. (7.4.18) once the residuals are available,
but it can also be obtained more readily by using the following relation (for proof, see
Appendix 7A, Section 7A.3):
(7.4.19)
which is the three-variable counterpart of the relation given in Eq. (3.3.6).
Properties of OLS Estimators
The properties of OLS estimators of the multiple regression model parallel those of the
two-variable model. Specifically:
1. The three-variable regression line (surface) passes through the means 
¯
Y
,
¯
X
2
, and
¯
X
3
, which is evident from Eq. (7.4.3) (cf. Eq. [3.1.7] of the two-variable model). This prop-
erty holds generally. Thus in the 
k
-variable linear regression model (a regressand and
[
k

1] regressors)
Y
i
=
β
1
+
β
2
X
2
i
+
β
3
X
3
i
+ · · · +
β
k
X
ki
+
u
i
(7.4.20)
we have
ˆ
β
1
= ¯
Y

β
2
¯
X
2

β
3
ˆ
X
3
− · · · −
β
k
¯
X
k
(7.4.21)
2. The mean value of the estimated 
Y
i
(
= ˆ
Y
i
) is equal to the mean value of the actual
Y
i
, which is easy to prove:
ˆ
Y
i
= ˆ
β
1
+ ˆ
β
2
X
2
i
+ ˆ
β
3
X
3
i
=
(
¯
Y
− ˆ
β
2
¯
X
2
− ˆ
β
3
¯
X
3
)
+ ˆ
β
2
X
2
i
+ ˆ
β
3
X
3
i
(Why?)
= ¯
Y
+ ˆ
β
2
(
X
2
i
− ¯
X
2
)
+ ˆ
β
3
(
X
3
i
− ¯
X
3
)
(7.4.22)
= ¯
Y
+ ˆ
β
2
x
2
i
+ ˆ
β
3
x
3
i
where as usual small letters indicate values of the variables as deviations from their
respective means.
Summing both sides of Eq. (7.4.22) over the sample values and dividing through by
the sample size 
n
gives 
¯ˆ
Y
= ¯
Y
.
(
Note:
x
2
i
=
x
3
i
=
0
.
Why?) Notice that by virtue of
Eq. (7.4.22) we can write
ˆ
y
i
= ˆ
β
2
x
2
i
+ ˆ
β
3
x
3
i
(7.4.23)
where 
ˆ
y
i
=
(
ˆ
Y
i
− ¯
Y
)
.
Therefore, the SRF (7.4.1) can be expressed in the 
deviation form
as
y
i
= ˆ
y
i
+ ˆ
u
i
= ˆ
β
2
x
2
i
+ ˆ
β
3
x
3
i
+ ˆ
u
i
(7.4.24)
3.
ˆ
u
i
= ¯ˆ
u
=
0, which can be verified from Eq. (7.4.24). (
Hint:
Sum both sides
of Eq. [7.4.24] over the sample values.)
4. The residuals 
ˆ
u
i
are uncorrelated with 
X
2
i
and 
X
3
i
, that is, 
ˆ
u
i
X
2
i
=
ˆ
u
i
X
3
i
=
0
(see Appendix 7A.1 for proof).
ˆ
u
2
i
=
y
2
i
− ˆ
β
2
y
i
x
2
i
− ˆ
β
3
y
i
x
3
i
guj75772_ch07.qxd 11/08/2008 04:22 PM Page 195


196
Part One
Single-Equation Regression Models
5. The residuals 
ˆ
u
i
are uncorrelated with 
ˆ
Y
i
; that is, 
ˆ
u
i
ˆ
Y
i
=
0
.
Why? (
Hint:
Multiply
Eq. [7.4.23] on both sides by 
ˆ
u
i
and sum over the sample values.)
6. From Eqs. (7.4.12) and (7.4.15) it is evident that as 
r
2 3
, the correlation coefficient
between 
X
2
and 
X
3
, increases toward 1, the variances of 
ˆ
β
2
and 
ˆ
β
3
increase for given val-
ues of 
σ
2
and 
x
2
2
i
or
x
2
3
i
.
In the limit, when 
r
2 3
=
1 (i.e., perfect collinearity), these
variances become infinite. The implications of this will be explored fully in Chapter 10, but
intuitively the reader can see that as 
r
2 3
increases it is going to be increasingly difficult to
know what the true values of 
β
2
and 
β
3
are. (More on this in the next chapter, but refer to
Eq. [7.1.13].)
7. It is also clear from Eqs. (7.4.12) and (7.4.15) that for given values of 
r
2 3
and 
x
2
2
i
or 
x
2
3
i
, the variances of the OLS estimators are directly proportional to 
σ
2
;
that is, they
increase as 
σ
2
increases. Similarly, for given values of 
σ
2
and 
r
2 3
, the variance of 
ˆ
β
2
is
inversely proportional to 
x
2
2
i
; that is, the greater the variation in the sample values of 
X
2
,
the smaller the variance of 
ˆ
β
2
and therefore 
β
2
can be estimated more precisely. A similar
statement can be made about the variance of 
ˆ
β
3
.
8. Given the assumptions of the classical linear regression model, which are spelled
out in Section 7.1, one can prove that the OLS estimators of the partial regression coeffi-
cients not only are linear and unbiased but also have minimum variance in the class of all
linear unbiased estimators. In short, 
they are BLUE.
Put differently, they satisfy
the Gauss–Markov theorem. (The proof parallels the two-variable case proved in Appen-
dix 3A, Section 3A.6 and will be presented more compactly using matrix notation in

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   194   195   196   197   198   199   200   201   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish