The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet194/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   190   191   192   193   194   195   196   197   ...   868
(7.1.12)
the two variables are linearly dependent, and if both are included in a regression model, we
will have perfect collinearity or an exact linear relationship between the two regressors.
Although we shall consider the problem of multicollinearity in depth in Chapter 10, in-
tuitively the logic behind the assumption of no multicollinearity is not too difficult to grasp.
Suppose that in Eq. (7.1.1) 
Y

X
2
, and 
X
3
represent consumption expenditure, income, and
wealth of the consumer, respectively. In postulating that consumption expenditure is lin-
early related to income and wealth, economic theory presumes that wealth and income may
have some independent influence on consumption. If not, there is no sense in including
both income and wealth variables in the model. In the extreme, if there is an exact linear re-
lationship between income and wealth, we have only one independent variable, not two,
and there is no way to assess the 
separate
influence of income and wealth on consumption.
To see this clearly, let 
X
3
i
=
2
X
2
i
in the consumption–income–wealth regression. Then the
regression (7.1.1) becomes
Y
i
=
β
1
+
β
2
X
2
i
+
β
3
(2
X
2
i
)
+
u
i
=
β
1
+
(
β
2
+
2
β
3
)
X
2
i
+
u
i
(7.1.13)
=
β
1
+
α
X
2
i
+
u
i
where 
α
=
(
β
2
+
2
β
3
)
.
That is, we in fact have a two-variable and not a three-variable
regression. Moreover, if we run the regression (7.1.13) and obtain 
α
, there is no way to
estimate the separate influence of 
X
2
(
=
β
2
) and 
X
3
(
=
β
3
) on 
Y
, for 
α
gives the 
combined
influence
of 
X
2
and 
X
3
on 
Y
.
3
In short, the assumption of no multicollinearity requires that in the PRF we include only
those variables that are not exact linear functions of one or more variables in the model.
Although we will discuss this topic more fully in Chapter 10, a couple of points may be
noted here.
First, the assumption of no multicollinearity pertains to our theoretical (i.e., PRF)
model. In practice, when we collect data for empirical analysis there is no guarantee that
there will not be correlations among the regressors. As a matter of fact, in most applied
work it is almost impossible to find two or more (economic) variables that may not be
correlated to some extent, as we will show in our illustrative examples later in the chapter.
What we require is that there be no exact linear relationships among the regressors, as in
Eq. (7.1.12).
Second, keep in mind that we are talking only about perfect 
linear
relationships between
two or more variables. Multicollinearity does not rule out 
nonlinear 
relationships between
variables. Suppose
X
3
i
=
X
2
2
i
.
This does not violate the assumption of no perfect collinearity,
as the relationship between the variables here is nonlinear.
3
Mathematically speaking, 
α
=
(
β
2
+
2
β
3
) is one equation in two unknowns and there is no 
unique
way of estimating 
β
2
and 
β
3
from the estimated 
α
.
guj75772_ch07.qxd 11/08/2008 04:22 PM Page 190


Chapter 7
Multiple Regression Analysis: The Problem of Estimation

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   190   191   192   193   194   195   196   197   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish