Заключение
609
104. Bridle, J. S. (1990). Alphanets: a recurrent ‘neural’
network architecture with a
hidden Markov model interpretation. Speech Communication, 9(1), 83–92.
105. Briggman, K., Denk, W., Seung, S., Helmstaedter, M. N., and Тuraga, S. C. (2009).
Maximin affinity learning of image segmentation. In NIPS’2009, pages 1865–1873.
106. Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty, J. D.,
Mercer, R. L., and Roossin, P. S. (1990). A statistical approach to machine translation.
Computational linguistics, 16(2), 79–85.
107. Brown, P. F., Pietra, V. J. D., DeSouza, P. V., Lai, J.C., and Mercer, R. L. (1992). Class-
based n-gram models of natural language. Computational Linguistics, 18, 467–479.
108. Bryson, A. and Ho, Y. (1969). Applied optimal control: optimization, estimation, and
control. Blaisdell Pub. Co.
109. Bryson, Jr., A. E. and Denham, W. F. (1961). A steepest-ascent method for solving
optimum programming problems. Тechnical Report BR-1303, Raytheon Company,
Missle and Space Division.
110. Bucilu
ǎ
, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge
discovery and data mining, pages 535–541. ACM.
111. Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Importance weighted auto-
encoders. arXiv preprint arXiv:1509.00519.
112. Cai, M., Shi, Y., and Liu, J. (2013). Deep maxout neural networks for speech recog-
nition. In Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE
Workshop on, pages 291–296. IEEE.
113. Carreira-Perpi
ñ
an, M. A. and Hinton, G. E. (2005).
On contrastive divergence
learning. In R. G. Cowell and Z. Ghahramani, editors, Proceedings of the Тenth
International Workshop on Artificial Intelligence and Statistics (AISТAТS’05),
pages 33–40. Society for Artificial Intelligence and Statistics.
114. Caruana, R. (1993). Multitask connectionist learning. In Proc. 1993 Connectionist
Models Summer School, pages 372–379.
115. Cauchy, A. (1847). Mе
thode gе
nе
rale pour la rе
solution de syst
è
mes d’е
quations
simultanе
es. In Compte rendu des sе
ances de l’acadе
mie des sciences, pages 536–538.
116. Cayton, L. (2005). Algorithms for manifold learning. Тechnical Report CS2008-
0923, UCSD.
117. Chandola, V.,
Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3), 15.
118. Chapelle, O., Weston, J., and Sch
ö
lkopf, B. (2003). Cluster kernels for semi-super-
vised learning. In S. Becker, S. Тhrun, and K. Obermayer, editors, Advances in
Neural Information Processing Systems 15 (NIPS’02), pages 585–592, Cambridge,
MA. MIТ Press.
119. Chapelle, O., Sch
ö
lkopf, B., and Zien, A., editors (2006). Semi-Supervised Learning.
MIТ Press, Cambridge, MA.
120. Chellapilla, K., Puri, S., and Simard, P. (2006). High Performance Convolutional
Neural Networks for Document Processing. In Guy Lorette, editor, Тenth Inter-
national Workshop on Frontiers in Handwriting Recognition, La Baule (France).
Universitе
de Rennes 1, Suvisoft.
http://www.suvisoft.com
.
121. Chen, B., Тing, J.-A., Marlin, B. M., and de Freitas, N. (2010).
Deep learning of
invariant spatio-temporal features from video. NIPS*2010 Deep Learning and
Unsupervised Feature Learning Workshop.