Immune determinants of covid-19 disease presentation and severity


Immune-system parameters associated with obesity, aging and severe COVID-19



Download 1,26 Mb.
Pdf ko'rish
bet14/17
Sana06.01.2022
Hajmi1,26 Mb.
#322298
1   ...   9   10   11   12   13   14   15   16   17
Bog'liq
brodin2021

Immune-system parameters associated with obesity, aging and severe COVID-19.

 The gradient illustrates the risk of developing severe COVID-19 

in relation to known immune system changes with age (



x

 axis) and obesity (



y

 axis).


Nature MeDICINe

 | VOL 27 | JanUaRy 2021 | 28–33 | 

www.nature.com/naturemedicine

31



PersPective

NATuRe MeDICINe

disease manifestations, their shared and distinguishing features and 

affected populations and immunological features.

Received: 1 May 2020; Accepted: 3 December 2020;  

Published online: 13 January 2021

references

 1.  van Doremalen, N. et al. Aerosol and surface stability of SARS-CoV-2 as 

compared with SARS-CoV-1. 

N. Engl. J. Med.

 382, 1564–1567 (2020).

 2.  Huang, C. et al. Clinical features of patients infected with 2019 novel 

coronavirus in Wuhan, China. 



Lancet

 395, 497–506 (2020).

 3.  Wölfel, R. et al. Virological assessment of hospitalized patients with 

COVID-2019. 



Nature

 581, 465–469 (2020).

 4.  Moghadas, S. M. et al. The implications of silent transmission for the control 

of COVID-19 outbreaks. 



Proc. Natl Acad. Sci. USA

 117, 17513–17515 (2020).

 5.  Brodin, P. Why is COVID‐19 so mild in children? 

Acta Paediatr.

 109

1082–1083 (2020).

 6.  Takahashi, T. et al. Sex differences in immune responses that underlie 

COVID-19 disease outcomes. 

Nature

 588, 315–320 (2020).

 7.  Liu, Y. et al. Viral dynamics in mild and severe cases of COVID-19. 

Lancet 

Infect. Dis.

 20, 656–657 (2020).

 8.  Smith, J. C. et al. Cigarette smoke exposure and inflammatory signaling 

increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory 

tract. 

Dev. Cell

 53, 514–529(2020).

 9.  Mehta, P. et al. COVID-19: consider cytokine storm syndromes and 

immunosuppression. 



Lancet

 395, 1033–1034 (2020).

 10. Cao, X. COVID-19: immunopathology and its implications for therapy. 

Nat. 

Rev. Immunol.

 20, 269–270 (2020).

 11. Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals 

distinct immunotypes with implications for therapeutic interventions. 



Science

 

369, eabc8511 (2020).

 12. Lucas, C. et al. Longitudinal immunological analyses reveal inflammatory 

misfiring in severe COVID-19 patients. 



Nature

 584, 463–469 (2020).

 13. Rodriguez, L. et al. Systems-level immunomonitoring from acute to recovery 

phase of severe COVID-19. 



Cell Rep. Med.

 1, 100078 (2020).

 14. Carfì, A. et al. Persistent symptoms in patients after acute COVID-19. 

JAMA

 

324, 603–605 (2020).

 15. Dennis, A. et al. Multi-organ impairment in low-risk individuals with long 

COVID. Preprint at 



medRxiv

 

https://doi.org/10.1101/2020.10.14.20212555



 

(2020).


 16. Ludvigsson, J. F. Case report and systematic review suggest that children may 

experience similar long‐term effects to adults after clinical COVID‐19. 



Acta 

Paediatr.

 

https://doi.org/10.1111/apa.15673



 (2020).

 17. Davido, B., Seang, S., Tubiana, R. & de Truchis, P. Post-COVID-19 chronic 

symptoms: a post-infectious entity? 

Clin. Microbiol. Infec.

 26, 1448–1449 (2020).

 18. Guillot, X., Ribera, A. & Gasque, P. Chikungunya-induced arthritis in 

Reunion Island: a long-term observational follow-up study showing 

frequently persistent joint symptoms, some cases of persistent chikungunya 

immunoglobulin M positivity, and no anticyclic citrullinated peptide 

seroconversion after 13 years. 

J. Infect. Dis.

 222, 1740–1744 (2020).

 19. Clark, D. V. et al. Long-term sequelae after Ebola virus disease in 

Bundibugyo, Uganda: a retrospective cohort study. 



Lancet Infect. Dis.

 15

905–912 (2015).

 20. Hickie, I. et al. Post-infective and chronic fatigue syndromes precipitated by 

viral and non-viral pathogens: prospective cohort study. 

BMJ

 333, 575 (2006).

 21. Rodriguez, L. S. T. et al. Achieving symptom relief in patients with Myalgic 

encephalomyelitis by targeting the neuro-immune interface and inducing 

disease tolerance. Preprint at 

bioRxiv

 

https://doi.



org/10.1101/2020.02.20.958249

 (2020).


 22. Whittaker, E. et al. Clinical characteristics of 58 children with a pediatric 

inflammatory multisystem syndrome temporally associated with 

SARS-CoV-2. 

JAMA

 324, 259–269 (2020).

 23. Belot, A. et al. SARS-CoV-2-related paediatric inflammatory multisystem 

syndrome, an epidemiological study, France, 1 March to 17 May 2020. 



Euro. 

Surveill.

 25, 2001010 (2020).

 24. Toubiana, J. et al. Kawasaki-like multisystem inflammatory syndrome in 

children during the COVID-19 pandemic in Paris, France: prospective 

observational study. 

BMJ

 369, m2094 (2020).

 25. Morris, S. B. et al. Case series of multisystem inflammatory syndrome in 

adults associated with SARS-CoV-2 infection—United Kingdom and United 

States, March–August 2020. 

Morbidity Mortal. Wkly Rep.

 69, 1450–1456 

(2020).

 26. Marrani, E., Burns, J. C. & Cimaz, R. How should we classify Kawasaki 

disease? 

Front Immunol.

 9, 2974 (2018).

 27. Corwin, D. J. et al. Distinguishing multisystem inflammatory syndrome in 

children from Kawasaki disease and benign inflammatory illnesses in the 

SARS-CoV-2 pandemic. 

Pediatr. Emerg. Care

 36, 554–558 (2020).

 28. Diorio, C. et al. Multisystem inflammatory syndrome in children and 

COVID-19 are distinct presentations of SARS-CoV-2. 



J. Clin. Invest.

 130

5967–5975 (2020).

 29. Consiglio, C. R. et al. The immunology of multisystem inflammatory 

syndrome in children with COVID-19. 

Cell

 183, 968–981 (2020).

 30. Consiglio, C. R. & Brodin, P. Stressful beginnings with long-term 

consequences. 



Cell

 180, 820–821 (2020).

 31. Gruber, C. et al. Mapping systemic inflammation and antibody responses  

in multisystem inflammatory syndrome in children (MIS-C). 



Cell

 183

982–995 (2020).

 32. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and  

TMPRSS2 and is blocked by a clinically proven protease inhibitor. 

Cell

 181

271–280 (2020).

 33. Xu, H. et al. High expression of ACE2 receptor of 2019-nCoV on the 

epithelial cells of oral mucosa. 

Int. J. Oral. Sci.

 12, 8 (2020).

 34. Qi, F., Qian, S., Zhang, S. & Zhang, Z. Single cell RNA sequencing of 13 

human tissues identify cell types and receptors of human coronaviruses. 



Biochem. Bioph. Res. Co.

 526, 135–140 (2020).

 35. Hamming, I. et al. Tissue distribution of ACE2 protein, the functional 

receptor for SARS coronavirus. A first step in understanding SARS 

pathogenesis. 

J. Pathol.

 203, 631–637 (2004).

 36. Hikmet, F. et al. The protein expression profile of ACE2 in human tissues. 

Mol. Syst. Biol.

 16, e9610 (2020).

 37. Xu, Y. et al. Characteristics of pediatric SARS-CoV-2 infection and potential 

evidence for persistent fecal viral shedding. 



Nat. Med.

 26, 502–505 (2020).

 38. Uhlen, M. et al. A genome-wide transcriptomic analysis of protein-coding 

genes in human blood cells. 



Science

 366, eaax9198 (2019).

 39. Lim, Y., Ng, Y., Tam, J. & Liu, D. Human coronaviruses: a review of 

virus–host interactions. 



Diseases

 4, 26 (2016).

 40. Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of 

immunity. 



Cell

 180, 1044–1066 (2020).

 41. Nieto-Torres, J. L. et al. Severe acute respiratory syndrome coronavirus E 

protein transports calcium ions and activates the NLRP3 inflammasome. 



Virology

 485, 330–339 (2015).

 42. Rodrigues, T.S. et al. Inflammasomes are activated in response to 

SARS-CoV-2 infection and are associated with COVID-19 severity in 

patients. 

J. Exp. Med.

 218, e20201707 (2021).

 43. Han, Y. et al. Lactate dehydrogenase, a risk factor of severe COVID-19 

patients. 



Aging

 12, 11245–11258 (2020).

 44. Wu, C. et al. Inflammasome activation triggers blood clotting and host death 

through pyroptosis. 



Immunity

 50, 1401–1411 (2019).

 45. Middeldorp, S. et al. Incidence of venous thromboembolism in hospitalized 

patients with COVID-19. 



J. Thromb. Haemost.

 18, 1995–2002 (2020).

 46. Greenhalgh, T., Knight, M., A’Court, C., Buxton, M. & Husain, L. Management 

of post-acute COVID-19 in primary care. 



BMJ

 370, m3026 (2020).

 47. Züst, R. et al. Ribose 2

-O-methylation provides a molecular signature for the 



distinction of self and non-self mRNA dependent on the RNA sensor Mda5. 

Nat. Immunol.

 12, 137–143 (2011).

 48. Spiegel, M. et al. Inhibition of beta interferon induction by severe acute 

respiratory syndrome coronavirus suggests a two-step model for activation of 

interferon regulatory factor 3. 

J. Virol.

 79, 2079–2086 (2005).

 49. Miorin, L. et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear 

import and antagonize interferon signaling. 



Proc. Natl. Acad Sci. USA

 117

28344–28354 (2020).

 50. Arunachalam, P. S. et al. Systems biological assessment of immunity to mild 

versus severe COVID-19 infection in humans. 

Science

 369, 1210–1220 (2020).

 51. Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives 

development of COVID-19. 



Cell

 181, 1036–1045 (2020).

 52. Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in 

severe COVID-19. 



Nature

 584, 463–469 (2020).

 53. Vabret, N. et al. Immunology of COVID-19: current state of the science. 

Immunity

 52, 910–941 (2020).

 54. Casanova, J.-L., Su, H. C. & COVID Human Genetic Effort. A global effort to 

define the human genetics of protective immunity to SARS-CoV-2 infection. 



Cell

 181, 1194–199 (2020).

 55. Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with 

life-threatening COVID-19. 



Science

 370, eabd4570 (2020).

 56. Bastard, P. et al. Auto-antibodies against type I IFNs in patients with 

life-threatening COVID-19. 



Science

 370, eabd4585 (2020).

 57. Gudbjartsson, D. F. et al. Humoral immune response to SARS-CoV-2 in 

Iceland. 



N. Engl. J. Med.

 383, 1724–1734 (2020).

 58. Wajnberg, A. et al. Robust neutralizing antibodies to SARS-CoV-2 infection 

persist for months. 



Science

 370, eabd7728 (2020).

 59. Lumley, S. F. et al. Antibodies to SARS-CoV-2 are associated with protection 

against reinfection. Preprint at medRxiv 

https://doi.

org/10.1101/2020.11.18.20234369

 (2020).

 60. Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in 

humans with COVID-19 disease and unexposed individuals. 

Cell

 181

1489–1501 (2020).


Download 1,26 Mb.

Do'stlaringiz bilan baham:
1   ...   9   10   11   12   13   14   15   16   17




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish