Partial differential equations



Download 1,53 Mb.
Pdf ko'rish
bet15/30
Sana10.12.2019
Hajmi1,53 Mb.
#29388
1   ...   11   12   13   14   15   16   17   18   ...   30
Bog'liq
20050415 English


Problems
1. Solve the heat equation
u
t
(r, θ, t) = k

2
u,
0
≤ r < a, < θ < 2π, t > 0
subject to the boundary condition
u(a, θ, t) = 0
(zero temperature on the boundary)
and the initial condition
u(r, θ, 0) = α(r, θ).
2. Solve the wave equation
u
tt
(r, t) = c
2
(u
rr
+
1
r
u
r
),
u
r
(a, t) = 0,
u(r, 0) = α(r),
u
t
(r, 0) = 0.
Show the details.
3.
Consult numerical analysis textbook to obtain the smallest eigenvalue of the above
problem.
4. Solve the wave equation
u
tt
(r, θ, t)
− c
2

2
= 0,
0
≤ r < a, < θ < 2π, t > 0
subject to the boundary condition
u
r
(a, θ, t) = 0
and the initial conditions
u(r, θ, 0) = 0,
u
t
(r, θ, 0) = β(r) cos 5θ.
5. Solve the wave equation
u
tt
(r, θ, t)
− c
2

2
= 0,
0
≤ r < a, < θ < π/2, t > 0
subject to the boundary conditions
u(a, θ, t) = u(r, 0, t) = u(r, π/2, t) = 0
(zero displacement on the boundary)
and the initial conditions
u(r, θ, 0) = α(r, θ),
u
t
(r, θ, 0) = 0.
163

7.6
Laplace’s Equation in a Circular Cylinder
Laplace’s equation in cylindrical coordinates is given by:
1
r
(ru
r
)
r
+
1
r
2
u
θθ
u
zz
= 0,
0
≤ r < a, < z < H, < θ < 2π.
(7.6.1)
The boundary conditions we discuss here are:
u(r, θ, 0) = α(r, θ),
on bottom of cylinder,
(7.6.2)
u(r, θ, H) = β(r, θ),
on top of cylinder,
(7.6.3)
u(a, θ, z) = γ(θ, z),
on lateral surface of cylinder.
(7.6.4)
Similar methods can be employed if the boundary conditions are not of Dirichlet type (see
exercises).
As we have done previously with Laplace’s equation, we use the principle of superposition
to get two homogenous boundary conditions. Thus we have the following three problems to
solve, each differ from the others in the boundary conditions:
Problem 1:
1
r
(ru
r
)
r
+
1
r
2
u
θθ
u
zz
= 0,
(7.6.5)
u(r, θ, 0) = 0,
(7.6.6)
u(r, θ, H) = β(r, θ),
(7.6.7)
u(a, θ, z) = 0,
(7.6.8)
Problem 2:
1
r
(ru
r
)
r
+
1
r
2
u
θθ
u
zz
= 0,
(7.6.9)
u(r, θ, 0) = α(r, θ),
(7.6.10)
u(r, θ, H) = 0,
(7.6.11)
u(a, θ, z) = 0,
(7.6.12)
Problem 3:
1
r
(ru
r
)
r
+
1
r
2
u
θθ
u
zz
= 0,
(7.6.13)
u(r, θ, 0) = 0,
(7.6.14)
u(r, θ, H) = 0,
(7.6.15)
u(a, θ, z) = γ(θ, z).
(7.6.16)
Since the PDE is the same in all three problems, we get the same set of ODEs
Θ

µΘ = 0,
(7.6.17)
164

Z

− λZ = 0,
(7.6.18)
r(rR

)

+ (λr
2
− µ)= 0.
(7.6.19)
Recalling Laplace’s equation in polar coordinates, the boundary conditions associated with
(7.6.17) are
Θ(0) = Θ(2π),
(7.6.20)
Θ

(0) = Θ

(2π),
(7.6.21)
and one of the boundary conditions for (7.6.19) is
|R(0)| < ∞.
(7.6.22)
The other boundary conditions depend on which of the three we are solving. For problem
1, we have
Z(0) = 0,
(7.6.23)
R(a) = 0.
(7.6.24)
Clearly, the equation for Θ can be solved yielding
µ
m
m
2
,
m=0,1,2,. . .
(7.6.25)
Θ
m
=

sin 
cos mθ.
(7.6.26)
Now the equation is solvable
R(r) = J
m
(
+
λ
mn
r),
(7.6.27)
where λ
mn
are found from (7.6.24) or equivalently
J
m
(
+
λ
mn
a) = 0,
n=1,2,3,. . .
(7.6.28)
Since λ > 0 (related to the zeros of Bessel’s functions), then the equation has the solution
Z(z) = sinh
+
λ
mn
z.
(7.6.29)
Combining the solutions of the ODEs, we have for problem 1:
u(r, θ, z) =


m=0


n=1
sinh
+
λ
mn
zJ
m
(
+
λ
mn
r) (A
mn
cos mθ B
mn
sin ,
(7.6.30)
165

where A
mn
and B
mn
can be found from the generalized Fourier series of β(r, θ).
The second problem follows the same pattern, replacing (7.6.23) by
Z(H) = 0,
(7.6.31)
leading to
u(r, θ, z) =


m=0


n=1
sinh
+
λ
mn
(z
− H)

J
m
(
+
λ
mn
r) (C
mn
cos mθ D
mn
sin (7.6.32)
where C
mn
and D
mn
can be found from the generalized Fourier series of α(r, θ).
The third problem is slightly different. Since there is only one boundary condition for R, we
must solve the equation (7.6.18) before we solve the equation. The boundary conditions
for the equation are
Z(0) = Z(H) = 0,
(7.6.33)
which result from (7.6.14-7.6.15). The solution of (7.6.18), (7.6.33) is
Z
n
= sin

H
z,
= 12, . . .
(7.6.34)
The eigenvalues
λ
n
=

H

2
,
= 12, . . .
(7.6.35)
should be substituted in the equation to yield
r(rR

)




H

2
r
2
m
2

= 0.
(7.6.36)
This equation looks like Bessel’s equation but with the wrong sign in front of r
2
term. It is
called the modified Bessel’s equation and has a solution
R(r) = c
1
I
m

H
r

c
2
K
m

H
r

.
(7.6.37)
The modified Bessel functions of the first (I
m
, also called hyperbolic Bessel functions) and
the second (K
m
, also called Bassett functions) kinds behave at zero and infinity similar to
J
m
and Y
m
respectively. In figure 51 we have plotted the Bessel functions I
0
through I
5
. In
figure 52 we have plotted the Bessel functions K
n
, n = 0123. Note that the vertical axis
is through .9 and so it is not so clear that K
n
tend to
∞ as x → 0.
Therefore the solution to the third problem is
u(r, θ, z) =


m=0


n=1
sin

H
zI
m
(

H
r) (E
mn
cos mθ F
mn
sin ,
(7.6.38)
where E
mn
and F
mn
can be found from the generalized Fourier series of γ(θ, z). The solution
of the original problem (7.6.1-7.6.4) is the sum of the solutions given by (7.6.30), (7.6.32)
and (7.6.38).
166

Problems
1. Solve Laplace’s equation
1
r
(ru
r
)
r
+
1
r
2
u
θθ
u
zz
= 0,
0
≤ r < a, < θ < 2π, < z < H
subject to each of the boundary conditions
a.
u(r, θ, 0) = α(r, θ)
u(r, θ, H) = u(a, θ, z) = 0
b.
u(r, θ, 0) = u(r, θ, H) = 0
u
r
(a, θ, z) = γ(θ, z)
c.
u
z
(r, θ, 0) = α(r, θ)
u(r, θ, H) = u(a, θ, z) = 0
d.
u(r, θ, 0) = u
z
(r, θ, H) = 0
u
r
(a, θ, z) = γ(z)
2. Solve Laplace’s equation
1
r
(ru
r
)
r
+
1
r
2
u
θθ
u
zz
= 0,
0
≤ r < a, < θ < π, < z < H
subject to the boundary conditions
u(r, θ, 0) = 0,
u
z
(r, θ, H) = 0,
u(r, 0, z) = u(r, π, z) = 0,
u(a, θ, z) = β(θ, z).
3. Find the solution to the following steady state heat conduction problem in a box

2
= 0,
0
≤ x < L, < y < L, < z < W,
subject to the boundary conditions
∂u
∂x
= 0,
= 0, x L,
168

∂u
∂y
= 0,
= 0, y L,
u(x, y, W ) = 0,
u(x, y, 0) = 4 cos
3π
L
cos
4π
L
y.
4. Find the solution to the following steady state heat conduction problem in a box

2
= 0,
0
≤ x < L, < y < L, < z < W,
subject to the boundary conditions
∂u
∂x
= 0,
= 0, x L,
∂u
∂y
= 0,
= 0, y L,
u
z
(x, y, W ) = 0,
u
z
(x, y, 0) = 4 cos
3π
L
cos
4π
L
y.
5. Solve the heat equation inside a cylinder
∂u
∂t
=
1
r

∂r

r
∂u
∂r

+
1
r
2

2
u
∂θ
2
+

2
u
∂z
2
,
0
≤ r < a, < θ < 2π, < z < H
subject to the boundary conditions
u(r, θ, 0, t) = u(r, θ, H, t) = 0,
u(a, θ, z, t) = 0,
and the initial condition
u(r, θ, z, 0) = (r, θ, z).
169

7.7
Laplace’s equation in a sphere
Laplace’s equation in spherical coordinates is given in the form
u
rr
+
2
r
u
r
+
1
r
2
u
θθ
+
cot θ
r
2
u
θ
+
1
r
2
sin
2
θ
u
ϕϕ
= 0,
0
≤ r < a, < θ < π, < ϕ < 2π ,
(7.7.1)
ϕ is the longitude and
π
2
− θ is the latitude. Suppose the boundary condition is
u(a, θ, ϕ) = (θ, ϕ.
(7.7.2)
To solve by the method of separation of variables we assume a solution u(r, θ, ϕ) in the form
u(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ.
(7.7.3)
Substitution in Laplace’s equation yields
R

+
2
r
R


ΘΦ +
1
r
2
RΘ

Φ +
cot θ
r
2
Θ

RΦ +
1
r
2
sin
2
θ
RΘΦ

= 0
Multiplying by
r
2
sin
2
θ
RΘΦ
, we can separate the ϕ dependence:
r
2
sin
2
θ

R

R
+
2
r
R

R
+
1
r
2
Θ

Θ
+
cot θ
r
2
Θ

Θ

=

Φ

Φ
µ .
Now the ODE for ϕ is
Φ

µΦ = 0
(7.7.4)
and the equation for r, θ can be separated by dividing through by sin
2
θ
r
2
R

R
+ 2r
R

R
+
Θ

Θ
+ cot θ
Θ

Θ
=
µ
sin
2
θ
.
Keeping the first two terms on the left, we have
r
2
R

R
+ 2r
R

R
=

Θ

Θ
− cot θ
Θ

Θ
+
µ
sin
2
θ
λ .
Thus
r
2
R

+ 2rR

− λR = 0
(7.7.5)
and
Θ

+ cot θΘ


µ
sin
2
θ
Θ + λΘ = 0 .
The equation for Θ can be written as follows
sin
2
θΘ

+ sin θ cos θΘ

+ (λ sin
2
θ
− µ)Θ = 0 .
(7.7.6)
170

What are the boundary conditions? Clearly, we have periodicity of Φ, i.e.
Φ(0) = Φ(2π)
(7.7.7)
Φ

(0) = Φ

(2π.
(7.7.8)
The solution R(r) must be finite at zero, i.e.
|R(0)| < ∞
(7.7.9)
as we have seen in other problems on a circular domain that include the pole, = 0.
Thus we can solve the ODE (7.7.4) subject to the conditions (7.7.7) - (7.7.8). This yields
the eigenvalues
µ
m
m
2
= 012,
· · ·
(7.7.10)
and eigenfunctions
Φ
m
=

cos 
sin 
= 12,
· · ·
(7.7.11)
and
Φ
0
= 1.
(7.7.12)
We can solve (7.7.5) which is Euler’s equation, by trying
R(r) = r
α
(7.7.13)
yielding a characteristic equation
α
2
α
− λ = 0 .
(7.7.14)
The solutions of the characteristic equation are
α
12
=
±

1 + 4λ
2
.
(7.7.15)
Thus if we take
α
1
=
1 +

1 + 4λ
2
(7.7.16)
then
α
2
=
(1 + α
1
)
(7.7.17)
and
λ α
1
(1 + α
1
.
(7.7.18)
(Recall that the sum of the roots equals the negative of the coefficient of the linear term and
the product of the roots equals the constant term.) Therefore the solution is
R(r) = Cr
α
1
Dr
(α
1
+1)
(7.7.19)
171

Using the boundedness condition (7.7.9) we must have = 0 and the solution of (7.7.5)
becomes
R(r) = Cr
α
1
.
(7.7.20)
Substituting λ and µ from (7.7.18) and (7.7.10) into the third ODE (7.7.6), we have
sin
2
θΘ

+ sin θ cos θΘ

+
α
1
(1 + α
1
) sin
2
θ
− m
2
Θ = 0 .
(7.7.21)
Now, lets make the transformation
ξ = cos θ
(7.7.22)
then
dΘ

=
dΘ



=
− sin θ
dΘ

(7.7.23)
and
d
2
Θ

2
=

d


sin θ
dΘ


=
− cos θ
dΘ

− sin θ
d
2
Θ

2


=
− cos θ
dΘ

+ sin
2
θ
d
2
Θ

2
.
(7.7.24)
Substitute (7.7.22) - (7.7.24) in (7.7.21) we have
sin
4
θ
d
2
Θ

2
− sin
2
θ cos θ
dΘ

− sin
2
θ cos θ
dΘ

+
α
1
(1 + α
1
) sin
2
θ
− m
2
Θ = 0 .
Divide through by sin
2
θ and use (7.7.22), we get
(1
− ξ
2


− 2ξΘ

+

α
1
(1 + α
1
)

m
2
1
− ξ
2

Θ = 0 .
(7.7.25)
This is the so-called associated Legendre equation.
For = 0, the equation is called Legendre’s equation. Using power series method of
solution, one can show that Legendre’s equation (see e.g. Pinsky (1991))
(1
− ξ
2


− 2ξΘ

α
1
(1 + α
1
)Θ = 0 .
(7.7.26)
has a solution
Θ(ξ) =


i=0
a
i
ξ
i
.
(7.7.27)
where
a
i+2
=
i(+ 1)
− α
1
(1 + α
1
)
(+ 1)(+ 2)
a
i
,
= 012,
· · · .
(7.7.28)
and a
0
, a
1
may be chosen arbitrarily.
172

–1
–0.5
0.5
1
–1
–0.8
–0.6
–0.4
–0.2
0.2
0.4
0.6
0.8
1
x
Figure 53: Legendre polynomials P
n
, n = 0, . . . , 5
If α
1
is an integer n, then the recurrence relation (7.7.28) shows that one of the solutions
is a polynomial of degree n. (If is even, choose a
1
= 0, a
0
= 0 and if is odd, choose
a
0
= 0, a
1
= 0.) This polynomial is denoted by P
n
(ξ). The first four Legendre polynomials
are
P
0
= 1
P
1
ξ
P
2
=
3
2
ξ
2

1
2
P
3
=
5
2
ξ
3

3
2
ξ
P
4
=
35
8
ξ
4

30
8
ξ
2
+
3
8
.
(7.7.29)
In figure 53, we have plotted the first 6 Legendre polynomials. The orthogonality of Legendre
polynomials can be easily shown

1
1
P
n
(ξ)P

(ξ)dξ = 0,
for
n

(7.7.30)
or

π
0
P
n
(cos θ)P

(cos θ) sin θdθ = 0,
for
n
 .
(7.7.31)
173

Q_0
Q_1
Q_2
Q_3
Legend
–1.5
–1
–0.5
0
0.5
1
1.5
–0.8
–0.6
–0.4
–0.2
0.2
0.4
0.6
0.8
x
Figure 54: Legendre functions Q
n
, n = 0, . . . , 3
The other solution is not a polynomial and denoted by Q
n
(ξ). In fact these functions can
be written in terms of inverse hyperbolic tangent.
Q
0
= tanh
1
ξ
Q
1
ξ tanh
1
ξ
− 1
Q
2
=
3ξ
2
− 1
2
tanh
1
ξ

3ξ
2
Q
3
=
5ξ
3
− 3ξ
2
tanh
1
ξ

15ξ
2
− 4
6
.
(7.7.32)
Now back to (7.7.25), differentiating (7.7.26) times with respect to θ, one has (7.7.25).
Therefore, one solution is
P
m
n
(cos θ) = sin
m
θ
d
m

m
P
n
(cos θ),
for
m
≤ n
(7.7.33)
or in terms of ξ
P
m
n
(ξ) = (1
− ξ
2
)
m/2
d
m

m
P
n
(ξ),
for
m
≤ n
(7.7.34)
which are the associated Legendre polynomials. The other solution is
Q
m
n
(ξ) = (1
− ξ
2
)
m/2
d
m

m
Q
n
(ξ).
(7.7.35)
174

The general solution is then
Θ
nm
(θ) = AP
m
n
(cos θ) + BQ
m
n
(cos θ), n = 012,
· · ·
(7.7.36)
Since Q
m
n
has a logarithmic singularity at θ = 0, we must have = 0. Therefore, the
solution becomes
Θ
nm
(θ) = AP
m
n
(cos θ.
(7.7.37)
Combining (7.7.11), (7.7.12), (7.7.19) and (7.7.37) we can write
u(r, θ, ϕ) =
-

n=0
A
n0
r
n
P
n
(cos θ)
+
-

n=0
-
n
m=1
r
n
P
m
n
(cos θ)(A
nm
cos mϕ B
mn
sin ).
(7.7.38)
where P
n
(cos θ) = P

n
(cos θ) are Legendre polynomials. The boundary condition (7.7.2)
implies
(θ, ϕ) =


n=0
A
n0
a
n
P
n
(cos θ)
+


n=0
n

m=1
a
n
P
m
n
(cos θ)(A
nm
cos mϕ B
mn
sin .
(7.7.39)
The coefficients A
n0
, A
nm
, B
nm
can be obtained from
A
n0
=
(
2π
0
(
π
0
(θ, ϕ)P
n
(cos θ) sin θdθdϕ
2πa
n
I
0
(7.7.40)
A
nm
=
(
2π
0
(
π
0
(θ, ϕ)P
m
n
(cos θ) cos mϕ sin θdθdϕ
πa
n
I
m
(7.7.41)
B
nm
=
(
2π
0
(
π
0
(θ, ϕ)P
m
n
(cos θ) sin mϕ sin θdθdϕ
πa
n
I
m
(7.7.42)
where
I
m
=

π
0
[P
m
n
(cos θ)]
2
sin θdθ
=
2(m)!
(2+ 1)(n
− m)!
.
(7.7.43)
175

Download 1,53 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   ...   30




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish