Beginning Anomaly Detection Using


restricted Boltzmann machines (RBM), deep Boltzmann machines



Download 26,57 Mb.
Pdf ko'rish
bet121/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   117   118   119   120   121   122   123   124   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

restricted Boltzmann machines (RBM), deep Boltzmann machines 

(DBM), and deep belief networks (DBN) are much more suitable and practical to work 

with, although they are a bit outdated and have no support from the major frameworks 

such as Keras, TensorFlow, and PyTorch. Despite that, they still see some new uses today

even though they are overshadowed by newer deep learning models. For our purposes, we 

will look at applying the 

RBM to anomaly detection, particularly because it is the easiest of 

the three Boltzmann machine derivations to implement and because it is simpler to work 

with when we consider the mathematics (which are still at an advanced level) at play.

F

E



D

C

B



A

H

G



Hidden Nodes

Visible Nodes

W

BC  


is the weight 

between nodes B and 

C

W

GF



Figure 5-1.  A graph showing how a Boltzmann machine can be structured. Notice 

that all of the nodes are interconnected, even if they are in the same layer

Chapter 5   Boltzmann maChines




181


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   117   118   119   120   121   122   123   124   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish