Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet117/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   113   114   115   116   117   118   119   120   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 4-73.  Showing the anomalies relative to the threshold

Figure 4-74.  Model graph shown in TensorBoard

Chapter 4   autoenCoders




176

Figure 


4-75

 shows the graph of the model as visualized by TensorBoard.

Figure 

4-76


 shows the plotting of the accuracy during the training process through 

the epochs of training.



Figure 4-75.  Model graph shown in TensorBoard

Figure 4-76.  Plotting of accuracy shown in TensorBoard

Figure 


4-77

 shows the plotting of the loss during the training process through the 

epochs of training.

Chapter 4   autoenCoders




177

Figure 


4-78

 shows the plotting of the accuracy of validation during the training 

process through the epochs of training.

Figure 4-77.  Plotting of loss shown in TensorBoard

Figure 


4-79

 shows the plotting of the loss of validation during the training process 

through the epochs of training.

Figure 4-78.  Plotting of validation accuracy shown in TensorBoard

Chapter 4   autoenCoders




178

 Summary

In this chapter, we discussed autoencoders, types of autoencoders, and how they can 

be used to build anomaly detection engines. We looked at implementing a simple 

autoencoder and sparse, deep, convolutional, and denoising autoencoders. We also 

explored the variational autoencoder as a means to detect anomalies.

In the next chapter, we will look at another method of anomaly detection, 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   113   114   115   116   117   118   119   120   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish