Beginning Anomaly Detection Using


lr: A float value specifying the learning rate. Default = 0.01 (or 1e-2). •  momentum



Download 26,57 Mb.
Pdf ko'rish
bet274/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   270   271   272   273   274   275   276   277   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

lr: A float value specifying the learning rate. Default = 0.01 (or 1e-2).

• 

momentum: (Optional). Some float value specifying the momentum 

factor. This parameter helps accelerate the optimization steps in the 

direction of the optimization, and helps reduce oscillations when 

the local minimum is overshot (refer to Chapter 

3

 to refresh your 



understanding on how a loss function is optimized). Default = 0.

• 

alpha: (Optional) A smoothing constant. Default = 0.99

• 

eps: (Optional). Some float value where epsilon e >= 0. Epsilon is 

some small number, described as 10E-8 in the paper, to help prevent 

division by 0. Default is 1e-8.

• 

centered: (Optional) If True, then compute the centered RMSprop 

and have the gradient normalized by an estimation of its variance. 

Default = False.

• 

weight_decay: An l2_penalty for weights that are too high, helping 

incentivize smaller model weights. Default = 0.

Hopefully by now you understand how PyTorch works by looking at some of the 

functionality that it offers. You built and applied a model to the MNIST data set in an 

organized format, and you looked at some of the basics of PyTorch by learning about the 

layers, how models are constructed, how activations are performed, and what the loss 

functions and optimizers are.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   270   271   272   273   274   275   276   277   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish