Beginning Anomaly Detection Using


weight: (Optional) A tensor that’s the size of the number of classes  n



Download 26,57 Mb.
Pdf ko'rish
bet271/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   267   268   269   270   271   272   273   274   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

weight: (Optional) A tensor that’s the size of the number of classes 

n. This is essentially a weight given to each class so that some classes 

are weighted more heavily in how they affect the overall loss and 

optimization problem.

• 

size_average: (Deprecated in favor of reduction.) The losses are 

averaged over each loss element in the batch by default (True). If 

set to False, then the losses are summed for each minibatch instead. 

Default = True.

• 

ignore_index: (Optional) An integer that specifies a target value 

that is ignored so it does not contribute to the input gradient. If 

size_average is True, then the loss is averaged over targets that aren’t 

ignored.

• 

reduce: (Deprecated in favor of reduction.) The losses are averaged 

or summed over observations for each minibatch depending on size_

average by default (True). If set to False, it returns a loss per batch 

element and ignores size_average. Default = True.

• 

reduction: A string value to specify the type of reduction to be done. 

Choose between ‘none’, ‘elementwise_mean’, or ‘sum’. ‘none’ means 

no reduction is applied, ‘elementwise_mean’ will divide the sum of 

the output by the number of elements in the output, and ‘sum’ will 

just sum the output. Default = ’elementwise_mean’. Note: Specifying 

either size_average or reduce will override this parameter.

Figure B-30.  An alternate way to write the equation in Figure 

B-29

appendix B   intro to pytorch




390


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   267   268   269   270   271   272   273   274   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish