Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet183/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   179   180   181   182   183   184   185   186   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 7-39.  Code to start the training process for the model

Figure 7-40.  The output during the training process

Figure 7-41.  The output when the training process ends

Chapter 7   temporal Convolutional networks




281

The output should look somewhat like Figure 

7-43

.

Now you can check the AUC score (see Figure 



7-44

).

The output should look somewhat like Figure 



7-45a

.

VFRUH 7&1HYDOXDWH [BWHVW\BWHVW



YHUERVH 

SULQW 7HVWORVV VFRUH>@

SULQW 7HVW PDH VFRUH>@

SULQW 7HVWDFFXUDF\ VFRUH>@



Figure 7-42.  Code to evaluate the loss and the accuracy on the test sets

Figure 7-43.  The generated loss and accuracy scores for the test set. The accuracy 

is really good, but again, accuracy isn’t always the best metric to judge models by

IURPVNOHDUQPHWULFVLPSRUWURFBDXFBVFRUH

SUHGV  7&1SUHGLFW [BWHVW

\BSUHG QSURXQG SUHGV

DXF URFBDXFBVFRUH \BSUHG\BWHVW

SULQW $8&^`IRUPDW DXF



Figure 7-44.  Code to generate an AUC score given the test sets and the 

predictions

Chapter 7   temporal Convolutional networks




282

For the classification report and confusion matrix, see Figure 

7-45b

.

Figure 7-45a.  The generated AUC score of 99.02% for this model



Figure 7-45b.  Classification report and confusion matrix

Chapter 7   temporal Convolutional networks




283

That’s a pretty good AUC score! However, this was an example of 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   179   180   181   182   183   184   185   186   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish