Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet180/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   176   177   178   179   180   181   182   183   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 7-30.  Outputs the shapes to provide an understanding of how the data sets 

are structured

Figure 7-31.  The shapes of both data sets

[BWUDLQ QSDUUD\ [BWUDLQ UHVKDSH [BWUDLQVKDSH>@

[BWUDLQVKDSH>@

[BWHVW QSDUUD\ [BWHVW UHVKDSH [BWHVWVKDSH>@

[BWHVWVKDSH>@

LQSXWBVKDSH  [BWUDLQVKDSH>@

\BWUDLQ NHUDVXWLOVWRBFDWHJRULFDO \BWUDLQ

\BWHVW NHUDVXWLOVWRBFDWHJRULFDO \BWHVW



Figure 7-32.  Makes the x sets three-dimensional and the y sets two-dimensional 

by reshaping the x sets and changing the y sets to be categorical. The reshaping of 

the x sets is done to fit the input shape of the model

Chapter 7   temporal Convolutional networks




276

Let’s take a look at how the operations changed the data sets. Run the code in 

Figure 

7-33


.

The output should look like Figure 

7-34

.

Alright, now both of the data sets have been reshaped successfully. The input shape 



tells the model how many columns and rows to accept per entry. In this case, the input 

shape indicates that there will be 1 row and 31 columns.

Now let’s move on to defining your model. The code chunk in Figure 

7-35


 defines the 

one-dimensional convolutional layers and the dropout layers.

SULQW

6KDSHV?Q[BWUDLQV?Q\BWUDLQV?Q [BWUDLQVKDSH



\BWUDLQVKDSH

SULQW


[BWHVWV?Q\BWHVWV?Q [BWHVWVKDSH\BWHVWVKDSH

SULQW


LQSXWBVKDSH^`?QIRUPDW LQSXWBVKDSH


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   176   177   178   179   180   181   182   183   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish