Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet128/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   124   125   126   127   128   129   130   131   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

unsupervised learning algorithm.

As for the training algorithm, there are two choices: 



contrastive divergence (CD) 

and 


persistent contrastive divergence (PCD). These algorithms both use Markov 

chains to help the training algorithm determine what direction to perform the gradient 

calculations in, but both differ and have their pros and cons. PCD can get better 

samples of the data and explore the domain of the input space better, but CD is better at 

extracting features.

Chapter 5   Boltzmann maChines




187

Some RBMs might also incorporate a feature known as 



momentum, which basically 

allows for an increase in learning speed and can be thought of as simulating a ball rolling 

down a hill in terms of optimizing the target function. (Think back to gradient descent 

and how the goal is to get to a local minimum. As the “ball” rolls towards the minimum

it gains “momentum” and descends faster and faster. Once it overshoots, it will gain new 

momentum in the opposite direction, incentivizing it to reach the minimum faster).

There are more intricacies to the RBM, but in the end, you only need to know that 

RBMs can be used to create a probability distribution of the input data. We will use this 

property of RBMs to single out anomalies by checking the probability of that particular 

sample of occurring.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   124   125   126   127   128   129   130   131   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish