Beginning Anomaly Detection Using


v) for every  possible  v



Download 26,57 Mb.
Pdf ko'rish
bet127/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   123   124   125   126   127   128   129   130   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

v) for every 

possible 



v given V, the set of all possible training inputs. We take that, and we want to 

maximize that product with respect to the weights 



W, so we want the weights to be 

increasing the joint probability (that product of all possible 



v layers).

We can also rewrite this in terms of maximizing the expected value of the log 

probability as shown in Figure 

5-17


.

Figure 5-17.  We take the log of p(v) for some v that’s a part of the whole training set 

V. Then we sum those terms up (think back to the log rules) and find the average of 

them all. That is what we want to maximize with respect to the weights 

W

The notation E [ ] stands for the 



expected value. In probability, E(X) is the expected 

value of some random variable X and can be thought of as the 



mean. In our case, we are 

trying to maximize the mean value of the log probability. Once again, 



V is the set of all 

training inputs.

So to explain what the formula means, we use log rules to rewrite the joint 

probability as a summation instead, and then we seek to maximize the average of that 

sum with respect to 

W, the weights. We want to adjust the weights so that we continue to 

maximize this expected value for every input in the entire training set.

The formulas pertaining to the RBM can get more complicated and detailed, but the 

ones listed so far should hopefully be enough to help you gain a good understanding 

of what an RBM is and how it works. At its core, the RBM is a probabilistic model that 

operates in accordance with a set of formulas. Additionally, the goal of the formulas is to 

help the RBM learn a probability distribution to represent V, explaining why the RBM is 

an 



Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   123   124   125   126   127   128   129   130   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish