Buxoro davlat pedagogika instituti Matematika va informatika yo’nalishi
3MI-22IM guruh talabasi
Raxmonqulova Nilufar Choriyevnaning Matematik analiz fanidan “Parametrik ko’rinishda berilgan funksiyalarni to’la tekshirish” mavzusida tayyorlagan
MUSTAQIL ISHI
BUXORO – 2023 YIL
MAVZU: PARAMETRIK KO’RINISHDA BERILGAN FUNKSIYALARNI TO’LA TEKSHIRISH.
REJA:
Parametrik ko’rinishda berilgan funksiya grafigi va misollar.
Tenglamasi qutb kordinatalar sistemasida berilgan funksiyaning grafigini chizish.
Parametrik ko’rinishda berilgan funksiya grafigi va misollar.
Ko‘pincha x o‘zgaruvchining u funksiyasi bitta y=f(x) tenglama bilan berilmasdan, balki x va u lar parametr deb ataladigan uchinchi t o‘zgaruvchining funksiyalari sistemasi
(1)
orqali beriladi. Bu erda t o‘zgaruvchi biror [,] kesmadan qiymat qabul qiladi. Bunday sistema orqali aniqlangan funksiya parametrik ko‘rinishda berilgan funksiya deyiladi.
Parametrik ko‘rinishda berilgan funksiyani x va y larni bog‘laydigan bitta formula orqali berish uchun (1) sistemada t parametrdan qutilish zarur. Buning uchun (1) sistemadagi tenglamalardan biridan, masalan, birinchi x=(t) tenglamadan t ni x orqali ifodalaymiz, ya’ni t=1(x), (bu erda t=1(x) funksiya x=(t) funksiyaga nisbatan teskari funksiya) va uni y=(t) ifodaga qo‘yamiz. U holda y=(1(x))=f(x) bo‘ladi, ya’ni y o‘zgaruvchi x argumentning funksiyasi sifatidagi ifodasi hosil bo‘ladi.
Endi (1) sistema bilan berilgan x va y larni Oxy tekislikdagi nuqtaning koordinatalari sifatida qaraymiz. U holda [,] kesmadan olingan t parametrning har bir qiymatiga tekislikda aniq bitta nuqta mos keladi. Agar x=(t), y=(t) funksiyalar t parametrning uzluksiz funksiyalari bo‘lsa, u holda (1) sistema tekislikda biror uzluksiz chiziqni ifodalaydi. Bu holda chiziq (1) parametrik tenglamalar bilan berilgan deyiladi. (1) sistemadagi tenglamalar shu chiziqning parametrik tenglamalari deyiladi.
Chiziqlarni parametrik usulda berilishiga misol sifatida markazi koordinatalar boshida, radiusi R teng bo‘lgan aylana tenglamasini keltirish mumkin: t[0;2], bu erda t geometrik nuqtai nazardan aylananing markaziy burchagini ifodalaydi. ( 1-rasm)
Aynan shu t parametrni vaqt deb qarashimiz ham mumkin. Haqiqatan ham, nuqtaning tekislikdagi har qanday harakatini t vaqtning funksiyasi bo‘lgan x va y koordinatalar
orqali berish mumkin. Shunday qilib, fizik nuqtai 13-rasm nazardan (1) sistemadagi ikki funksiya harakatdagi nuqtaning traektoriyasini aniqlaydi.
Qaralayotgan masala mazmunidan kelib chiqqan holda t parametrga turli ma’no berish mumkin. Masalan t parametr burchak, vaqt, temperatura, yoy va h. bo‘lishi mumkin.
2. Parametrik ko‘rinishda berilgan funksiyaning hosilasi.
Faraz qilaylik x argumentning y funksiyasi quyidagicha
(2)
parametrik tenglamalar bilan berilgan bo‘lsin.
Agar x=(t) funksiya teskarilanuvchi bo‘lsa, ya’ni t=1(x) mavjud bo‘lsa, u holda y=(t) tenglamani y=(1(x)) ko‘rinishda yozib olish va y=(1(x)) funksiyaning hosilasini topish masalasini qarash mumkin. Odatda bu masala parametrik tenglamalar bilan berilgan funksiyaning hosilasini topish masalasi deb ham yuritiladi.
Teorema. Aytaylik (t) va (t) funksiyalar ; da uzluksiz va (;) da differensiallanuvchi hamda ’(t) shu intervalda ishorasini saqlasin. Agar x=(t) funksiyaning qiymatlar to‘plami [a,b] kesma bo‘lsa, u holda x=(t), y=(t) tenglamalar [a,b] da uzluksiz, (a,b) da differensiallanuvchi bo‘lgan y=f(x) funksiyani aniqlaydi va
(3)
formula o‘rinli bo‘ladi.
Do'stlaringiz bilan baham: |