9.21 fiksirlangan. 10-masala. 10.1 Agar va uchun integral mavjud bo`lsa, unda ushbu
Frullani formulasini isbotlang.
10.2 integraldan foydalanib, ushbu
Dirixle formulasini isbotlang.
Quyidagi integrallarni hisoblang.
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
11-Masala. Quyidagi integrallarni hisoblang.
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21
Ko`rsatma. 10 va 11-masalalarni yechishda xosmas integrallarni parametr bo`yicha differensiallash yoki integrallash hamda Frullani va Dirixle integrallaridan foydalanish yaxshi natija beradi.
12-Masala. Eyler integrallaridan foydalanib quyidagi integrallarni hisoblang.
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18
12.19
12.20
12.21 -C- Namunaviy variant yechimi. 1.21-Masala. Quyidagi
xosmas integral hisoblansin.
Bu integralni hisoblash uchun xosmas integralda bo`laklab integrallash usulidan foydalanib, quyidagi ishlarni bajaramiz.
Demak,
. Shunday qilib, berilgan integral I ga nisbatan ushbu
tenglamaga keldik. Bu tenglamadan
ekanligini hosil qilamiz.