F D T asosida
n (« 0 = ^
= p (c o W v 2(fo)'
ekanini aniqlaym iz. Bunda
(2)
\
1
ЙС0
, ЙС0
0(co ) =
- y —T
= ----
Ctrl --
----
'
p(co)
2
2kT
( y
2
((n]j
tezlik avtokorrelatsiyasi F urye-kom ponentining kvadratidir.
195
6.19. Harakatchanlik
(.1
(yoki ishqalanish koeffitsiyenti
q )
ni aniqlang.
Y eehish. (184) tengiam ani yetarli darajada kichik vaqt intervali
t' — t
1
= i
— 0 uchun yozamiz:
d v (t
) = |i(f' --
t)F(t)di -
f.i(r' --
t)dF(})
(3)
Bunda
kinetik koeffitsiyent (harakatchanlik “zich ligi”),
d f ( t )
—
kuch im puki. (3) dan korrelyatsion teorem a asosida
fi(x) = 0
m
(
vv
(
t
)!>
(4)
munosabatni oiam iz, Bu ifodani vaqt b o ’vicha integrallab, harakatchanlik
(yoki ishqalanish koeffitsiyenti) ning um um iy ifodasi uchun
=
j - =
= 0"’ J ^ ( w ( t ) )
(5)
Sf
o
o
tenglamaga ega bo'lam
1
/.
Eslatma: Statsionar holat uchun quyidagi
ц = limjj. - 0 1 lim Jdx(vv(x))
(6)
I )
integral mavjud deb qaraladi.
6.20.
D
= 0£ ! = 6|.i tenglikni isbot qiling, bunda
D —
diffuziya koef
fitsiyenti.
Yeehish. aw algi masalaning vechim idan ma' lumki , (5) tenglama:
7 = J t / x ( v v ( - c )}
( 7 )
Ъ
о
D em ak,
D
= j"f/x(vv(x))
(8)
0
ekanligini isbot qilish kerak.
I ) « W = 4 ‘<
t
) ni nazarga olib, (189) ni quyidagicha yozamiz:
a(?) =
t;
jrfi(vv(x)) = 2E,2 jjT(vv(x)) =
2
^-(t)
(9)
1
!)
(9)ni (196) ga q o‘yib, olamiz:
( A r f = 2 D { t ) - t
(10)
/yetarli darajada katta bo'iganda, ya’ni
t
>> t bo'iganda.
D
ni doim iy deb
qarasak, (10) ifoda E ynshteyn form ulasiga o'tad i, Bu esa diffuziya
196
koeffitsiyenti
D
ifodasi (8) bilan aniqlangan tezlik avtokorrelatsiyasining
integrali ekanligini isbotlaydi.
2) ikkinchi usul,
v = (.iF
yoki chekli o'zgarish uchun
A
r -
ц А
tF
Korrelyatsion teorem aga asosan
Gf_iA/ = (Д гА г(т)|
yoki har ikki tom onga siljishni e ’tiborga olsak,
2 0 ц А
t
=
(ArAr(xJ/ = 2 D At
b o ‘ladi. Bundan
D
= 0 ц = G^'1
ekanligi kelib chiqadi.
6 .21.
Broun zarrasining
r
masofaga siljish ehtim olini aniqlang.
Y echish. Berilgan holatdan Broun zarrasining siljishlari tasodifiy va
sim m etrikdir. Shu sababli siljishlar norm al (G au ss) taqsim oti bilan
aniqlanadi:
d W ( x
) =
A
exp
Shuningdek,
dy
ga siljish ehti moli
d W( y ) = A
exp
2 (A
x
)2
- v"
2(A y)2
dx
dy
(И)
(
12
)
bo'ladi. Broun zarrasinnng r g a siljish ehtim oli (11) va (12) ehtim ollarni
ko‘payirib, so ‘ng burchaklar bo'yicha integrallab topiladi:
d W ( r
) = С exp
-
r
uw
rdr
(13)
bunda (Лг)~ = 2
D t .
Bu ifodadan ko’rinadiki, (13) taqsim ot vaqt o ‘tishi
bilan yoyilib ketadi.
MUNDARIJA
I
b
о
b.
K V A N T S T A T I S T I K A ............................................................................................... 3
1-§. K ir is h ............................................................................................................................................ 3
2--§. Sistem a h o la t i............................................................................................................................. 4
3 -§ . A y n a n lik p rin sip i ................................................................................................................... 8
4 -§ . S im m etrik va an tisim n ietrik to 'lq in fu n k siy a la r........................................................ 9
5 -§ . A lm a sh u v o 'z a r o t a ’sir.P a u li p r in s ip i...................................................................... 12
6
-§ . K vant zarralarning bir zarraviy h olatlar b o 'y ic h a t a q s im o t i.......................... 14
7 -§ . K vant statistik an in g ta q sim o t fu n k s iy a si................................................................... 16
8
-§ . B o z e -E y n sh te y n statistikasi .................................. .........................................................17
9 -§ . F erm i-D ira k sta tistik a si......................................................................................................19
10
-§ . Klassik statistika — kvant statistikaning xususiy holi. A ynish
te m p e r a tu r a si............................................................................................................................20
11-§. H o latlar z i c h l i g i .................................................................................................................25
II
b
о
b.
B O Z E -E Y N S H T E Y N S T A T IS T IK A S IN 1 N G T A T B I Q I ................. 27
1-§. Kirish ........................................................... ............................................................................. 27
2 -§ . A yn ilgan b o z e — gaz. B o ze — k o n d e n s a ts iy a ..........................................................28
3 -§ . M u vozan atli nurlanish. F o to n g a z ................................................................................31
4 - § . Plank fo r m u la si.....................................................................................................................32
5 -.§. Q attiq jism issiqlik sig 'im in in g n a z a r iy a s i............................................................... 38
6
-§ Issiqlik sig 'im n in g E yn sh teyn n a za riy a si................................................................... 4 2
7 - §. Issiqlik sig 'im n in g D e b a y n a z a r iy a s i....................................................................... 45
III b o b . F E R M I-D IR A K S T A T IS T IK A S IN IN G T A T B I Q I ............................ 61
1-§. K ir is h .........................................................................................................................................61
2 -§ . Q attiq jism lard agi elek tro n la r s is t e m a s i................................................................... 63
3 -§ . A b solu t nol tem peraturali F e r m i-g a z .........................................................................65
4 -§ . Past tem peraturali F e rm i-g a z term o d in a m ik a si ...................................................66
5 -§ . Kristallardagi en ergetik z o n a la r ...,................................................................................70
6
-§ . H olatlar zich lig i. Q attiq jism lar t u r la r i.....................................................................75
7 -§ . Yarim o ‘tkazgichlar. X ususiy o 'tk a z u v c h a n lik ........................................................ 77
8
-§ . A ralashm ali yarim o 'tk a z g ic h la r ....................................................................................81
9 -§ . A ralashm alar konsentratsiyalari bilan Ferm i sathi
orasidagi b o g 'la n ish .............................................................................................................. 84
198
I V b о b . O T A Y U Q O R I T E M P E R A T U R A L I V A Z I C H L I K L I
M O D D A H O L A T L A R I ............................................................................................................. 9 2
! - § . K i r i s h .......................................................................................................... .........................................9 2
2 - § . O la m n in g a w a i g i e r a la r i............................................................................................................9 4
3 - § . Y u ld u z la r d a e le m e n t la r s i n t e z i .............................................................................................. 9 6
4 - § . Y u td u z h o la t la r i............................................................................................................................ 100
5 - § . 0 4 a y a n g i y u l d u z la r ................................................................................................................... 105
6 - § . O q m itti y u l d u z l a r ....................................................................................................................108
7 - § N e y t r o n y u ld u z ............................................................................................................................ ! 12
8 -§ . K vark y u ld u zla r. Q o r a t e s h ik la r ........................................................................................... 121
V .b o b . Z I C H L I K M A T R I T S A S I ( O P E R A T O R I ) ................................................ 128
! - § . K i r i s h ................................................................. ................................................................................ 128
2 - § . D in a m ik k a tta lik n in g o ‘r t a c h a s i ........................................................................................ 128
3 - § . O s s illy a to r k o o r d in a ta s i v a i m p u ls in in g e h t im o lla r i ta q s im o tla r i ............... 1 2 9
V I b о b . F L U K T U A T S I Y A N A Z A R I Y A S I ........................................... ........................ 1 3 9
1 -§. K i r i s h ................................................................................................................................................. 139
2 - § . F lu k tu a ts iy a n in g t e r m o d in a m ik n a z a r iy a s i ................................................................ 139
3 - § . T e r m o d in a m ik p a r a m e tr la r f lu k t u a t s iy a s i...................................................................145
4 - § . Z a r ra la r s o n i flu k t u a t s iy a s i...................................................................................................14 9
5 - § . K v a n t id e a l zarralar s o n i f lu k t u a t s iy a s i........................................................................151
6 - § . F lu k tu a ts iy a la r m u n o s a b a t la r i ........................................................................................... 152
7 - § . P a r a m e tr la r n in g k o r r e la ts iy a s i.............................................................................................154
8 - § . I d e a l g a z zarralari ta q s im o t i ................................................................................................157
9 - § . C h iz iq li g a r m o n ik o s s illy a to r k o o r d in a ta s i v a im p u ls i
q iy m a tla r i flu k tu a ts iy a la r in in g t a q s i m o t i ........................................................................163
1 0 -§ . E le k tr o m a g n it m a y d o n f lu k tu a is iy a s in in g sp ek tra l z ic h lig i v a P la n k
f o r m u l a s i ..............................................................................................................................................1 6 6
1 1 -§ . F lu k tu a tsiy a va n o a n iq lik m u n o s a b a t i............................................................................ 167
1 2 -§ . K o r r e la tsiy a p aram etri v a f a z o v iy k o r r e la tsiy a
o r a sid a g i b o g ' l a n i s h .....................................................................................................................170
1 3 -§ . F lu k tu a ts iy a la r n in g v a q t b o 'y ic h a k o r r e l y a t s i y a s i ................................................174
1 4 -§ . F iu k tu a ts io n - d is s ip a t s io n t e o r e m a ...........................................................................1 76
1 5 -§ . K o r r e ly a tsio n t e o r e m a .......................................................................................................... 181
1 6 -§ . U m u m la s h g a n q ab u l q ilu v c h a n lik b ila n k in e tik k o e f fits iy e n t la r
b o g ' l a n i s h i ......................................................................................................................................... 183
1 7 -§ . 0 ‘lc h o v a s b o b la r in in g se z g ir lig ig a f lu k tu a ts iy a la r n in g t a ’s i r i .......................184
1 8 -§ . Z ic h lik flu k tu a tsiy a la rid a y o r u g 'lik s o c h ilis h i .......................................................... 187
1 9 -§ . B r o u n h arak ati n a z a r iy a si. L a n je v e n t e n g l a m a s i ................................................. 189
A .B O Y D E D A E V , P .H A B 1 B U L L A E V
K V A N T S T A T IS T 1 K F IZ IK A
О ‘quv qo 'llamna
M uharrir
J.Subxon
T e x n ik m uh arrir
M. Alimov
M u sa h h ih
H. Teshaboyev
K o m p y u te r d a sa h ifa lo v c h i
A. Ro'ziyev
B o sish g a ruxsat eDownload Do'stlaringiz bilan baham: |