Oʻzbekiston respublikasi оliy va oʻrta maxsus



Download 2,07 Mb.
bet21/158
Sana24.02.2023
Hajmi2,07 Mb.
#914238
1   ...   17   18   19   20   21   22   23   24   ...   158
Bog'liq
llm saechasmalari PdfToWord

Definition 4.[2] A fixed point x is called hyperbolic if its Jacobian 𝐷x𝑉(x) has no eigenvalues on the unit circle.
Definition 5.[2] A hyperbolic fixed point x is called:

  1. attracting if all the eigenvalues of the Jacobian 𝐷x𝑉(x) are less than 1 in absolute value;

  2. repelling if all the eigenvalues of the Jacobian 𝐷x𝑉(x) are greater than 1 in absolute value;

  3. a saddle otherwise.




  1. Main result. Consider the following two strictly non-Volterra QSOs on the two- dimensional simplex

𝑉:
𝑥′1 =
𝑥′2 =
𝗅𝑥′3 =




𝑥1
𝑥1
+ 2𝑥1𝑥2,

1 𝑥2 + 1 𝑥2 + 1 𝑥2
3 1 3 2 3 3

1
3

2

+ 1 𝑥2 + 1 𝑥2
3 2 3 3

1

2

+ 1 𝑥2 + 1 𝑥2
2 3

3




3




3






+ 2𝑥2𝑥3,
+ 2𝑥3𝑥1.

(3)


Lemma 1. The center x is a unique and attracting point of the QSO (3).
Proof. The equation 𝑉(x) = x has the form



1 2 1 2 1 2
𝑥1 = 3 𝑥1 + 3 𝑥2 + 3 𝑥3 + 2𝑥1𝑥2,



1 2 1 2 1 2

𝑥2 = 3 𝑥1 + 3 𝑥2 + 3 𝑥3 + 2𝑥2𝑥3,
(4)


1 2

+ 1 𝑥2 + 1 𝑥2
2 3

𝑥1
3

3




3






𝗅𝑥3 =
+ 2𝑥3𝑥1.

As before, a solution of the system (4) is a fixed point. It is known that the QSO (3) is a continuous operator and that the simplex over a finite set is compact and convex, so that by the Brouwer fixed-point theorem there is always at least one fixed point. We rewrite the system (4) in the form
𝑥1 − 𝑥2 = 2𝑥2(𝑥1 − 𝑥3),

{𝑥2 − 𝑥3 = 2𝑥3(𝑥2 − 𝑥1),
𝑥2 − 𝑥1 = 2𝑥1(𝑥3 − 𝑥2).
(5)

Let x ∈ 𝑆2 be a solution of the system (5). Assume that 𝑥 ≥ 𝑥. The rest is similar to this case.
1 2
Since 𝑥 ≥ 𝑥 from the first equation of the system (5) we get 𝑥 ≥ 𝑥. Using it from the second equation
1 2 1 3
of the system (5) we have 𝑥 ≥ 𝑥. Using it from the last equation we obtain that 𝑥 ≥ 𝑥 , that is
3 2 2 1

𝑥 ≥ 𝑥 ⇒ 𝑥 ≥ 𝑥 ⇒ 𝑥 ≥ 𝑥 ⇒ 𝑥 ≥ 𝑥 ⇒ 𝑥 ≥ 𝑥 ≥ 𝑥 ≥ 𝑥
∗ ∗ ∗ 1




1 2 1 3
3 2 2 1
1 3 2
1 ⇒ 𝑥1 = 𝑥2 = 𝑥3 = 3.

Therefore it follows that the center c = (1/3,1/3,1/3) is a unique fixed point.′
To find the type of the unique fixed point, using 𝑥3 = 1 − 𝑥1 − 𝑥2, we rewrite the quadratic opera- tor (3) in the form:

4 2 2 2 4


4 2 1




{𝑥1 = − 3 𝑥1 + 3 𝑥2 3 𝑥1𝑥2 + 3 𝑥1 3 𝑥2 + 3 ,
(6)

2 2



4 2 4



2 4 1




𝑥2 = 3 𝑥1 3 𝑥2 3 𝑥1𝑥2 3 𝑥1 + 3 𝑥2 + 3 .
where (𝑥1, 𝑥2) ∈ {(𝑥1, 𝑥2): 𝑥1, 𝑥2 ≥ 0,0 ≤ 𝑥1 + 𝑥2 ≤ 1}, and 𝑥1, 𝑥2 are the first two coordinates of the points of the simplex 𝑆2.
One has that the partial derivations has the form


1
𝑥𝘍 8
= −
∂𝑥1 3
𝑥1
4 4
3 𝑥2 + 3 ,
∂𝑥𝘍

1
=
∂𝑥2
4
3 𝑥2
4 2
3 𝑥1 3,


2
𝑥𝘍 4
= −
∂𝑥1 3
𝑥1
4 2
3 𝑥2 3 ,
∂𝑥𝘍

2
=
∂𝑥2
8
3 𝑥2
4 4
3 𝑥1 + 3

and their values at the center 𝐜 are equal


1
𝑥𝘍
(c) = 0,
∂𝑥1
𝑥𝘍 1

1
(c) = − ,
∂𝑥2 3
∂𝑥𝘍 2

2
(c) = − ,
∂𝑥1 3
𝑥𝘍

2
(c) = 0.
∂𝑥2

Thus, the Jacobian matrix of the operator (6) at the center c has the form:
0 − 1
3
𝐷x𝑉(c) = ( 2 0 )
3

Now let’s find the eigenvalues of the matrix 𝐷x𝑉(c):


−𝜇 − 1
3 2

𝑑𝑒𝑡 ( 2
3
−𝜇) = 0 ⇒ 𝜇1,2 = ± 3 ⇒ |𝜇1,2| ≤ 1.

This shows that the center c = (1/3,1/3,1/3) is an attracting point. The proof of lemma completed.


Lemma 2. The function 𝜑(x) = |𝑥1 − 𝑥2| ⋅ |𝑥2 − 𝑥3| ⋅ |𝑥3 − 𝑥1| is a Lyapunov function for the operator (3).
Proof. For a x ∈ 𝑆2 from (3) one has
𝜑(𝑉(x)) = |2𝑥1𝑥2 − 2𝑥2𝑥3| |2𝑥2𝑥3 − 2𝑥1𝑥3| |2𝑥1𝑥3 − 2𝑥1𝑥2|

3

3
= 8|𝑥2| |𝑥1 − 𝑥3| |𝑥3| |𝑥2 − 𝑥1| |𝑥1| |𝑥3 − 𝑥2|

( ) 𝑥1+𝑥2+𝑥3 ( )
2 ( ) ( )




= 8𝑥1 ⋅ 𝑥2 ⋅ 𝑥3 ⋅ 𝜑 x
≤ 8 (
) ⋅ 𝜑 x
3
= ( )
3
⋅ 𝜑 x
≤ 𝜑 x .

Thus the function 𝜑(x) is a decreasing Lyapunov function for the operator (3). The proof of the lemma completed.
Lemma 3. lim 𝑉𝑛(x(0)) = c for any initial point x(0) ∈ 𝑆2.
𝑛→∞
Proof. By Lemma 2 the function 𝜑(x) is a decreasing Lyapunov function. So from the form of
QSO (3) for the 𝐱(𝒏), 𝑛 = 0,1,2, … one has


3
𝜑 x(𝑛+1) 2



(𝑛)
2 (3𝑛+1)



(0)

(
Therefore it follows that
) ≤ ( )
3
⋅ 𝜑(x
) ≤ ( )
3
⋅ 𝜑(x ).

lim 𝜑(x(𝑛)) = 0 ⇔ lim x(𝑛) = c

𝑛→∞
where we have used that 𝜑(x(0)) is a bounded value. The proof of the lemma completed.
𝑛→∞

Theorem. a) The QSO (3) has a unique fixed point c = (1/3,1/3,1/3);

    1. The fixed point 𝐜 is an attracting point;

    2. For any x(0) ∈ 𝑆2, the trajectory {x(𝑛)} tends to the fixed point 𝐜;

    3. The QSO (3) is a regular transformation.

Proof. Collecting together all three Lemmas we complete the proof of Theorem.


References:

  1. Bernstein S. (1942). The Annals of Math. Stat. 13, p. 53 ‒ 63.

  2. Devaney R.L. (2003). An introduction to chaotic dynamical systems (New York, Westview Press).

3. Ganikhodzhaev R.N. (1992). Sb.Math. 183, p. 489 ‒ 497.

  1. Jamilov U., Ladra M. (2016). Qual. Theory Dyn. Syst. 15, p. 257 ‒ 268.

  2. Jamilov U., Ladra M. (2020). Qual. Theory Dyn. Syst. 19, p. 95 ‒ 106.

  3. Lyubich Y.I. (1992). Mathematical Structures in Population Genetics (Berlin: Sprenger).

  4. Mamurov B.J., Rozikov U.A., Xudayarov S.S. (2020). Markov Pros. Relat.Fields 26, 915 ‒ 933.

  5. Rozikov U.A., Zhamilov U.U. (2008). Math. Notes. 83, p. 554 ‒ 559.

9. Zhamilov U.U., Rozikov U.A. (2009). Sb. Math. 200, p. 1339 ‒1351.


Абдуллаева Хулкар Рахматуллаевна (Республика Маънавият ва маърифат маркази
мустақил тадқиқотчи-изланувчиси) ЭПИСТЕМОЛОГИЯНИНГ АХЛОҚИЙ ЖИҲАТЛАРИ


Аннотация. Мақолада эпистемологик масалалар, инсон билимлари даражаси, илмий билим- лар ва фаннинг ривожланиши ахлоқий жиҳатлари юзасидан фикрлар тадқиқ этилган. Илмий би- лимлар коммертизациялашуви, олимнинг бурчи ва масъулияти, фаннинг сиёсатга хизмат қилиши қандай оқибатларга олиб келиши ҳақида фикр-мулоҳазалар билдирилган, илмий билимларнинг фан учун илмий билишнинг муҳимлиги, фундаментал фанларнинг зарурияти очиб берилган.
Аннотация. В статье рассматриваются такие вопросы как эпистемологические ценнос- ти, уровень человеческих знаний, научные знания и моральные аспекты развития науки. Были вы- сказаны мнения о коммерциализации научных знаний, долге и ответственности ученого, послед- ствиях служения науки политике, важности научных знаний для науки, раскрыта необходимость фундаментальных наук.
Annotation. The article deals with such issues as epistemological values, the level of human know- ledge, scientific knowledge and moral aspects of the development of science. Opinions were expressed on the commercialization of scientific knowledge, the duty and responsibility of a scientist, the consequences of serving science to politics, the importance of scientific knowledge for science, the need for fundamental sciences was revealed.
Калит сўзлар: эпистемология, фан коммертизациялашуви, сиёсат, ахлоқ ва қадрият, лойи- ҳа, ташқи ва ички омиллар, экстернализм, “салбий этика”.

Download 2,07 Mb.

Do'stlaringiz bilan baham:
1   ...   17   18   19   20   21   22   23   24   ...   158




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish