Definition 4.[2] A fixed point x∗ is called hyperbolic if its Jacobian 𝐷x𝑉(x∗) has no eigenvalues on the unit circle.
Definition 5.[2] A hyperbolic fixed point x∗ is called:
attracting if all the eigenvalues of the Jacobian 𝐷x𝑉(x∗) are less than 1 in absolute value;
repelling if all the eigenvalues of the Jacobian 𝐷x𝑉(x∗) are greater than 1 in absolute value;
a saddle otherwise.
Main result. Consider the following two strictly non-Volterra QSOs on the two- dimensional simplex
𝑉:
𝑥′ 1 =
𝑥′ 2 =
𝗅𝑥′ 3 =
𝑥 1
𝑥 1
+ 2𝑥 1𝑥 2,
1 𝑥2 + 1 𝑥2 + 1 𝑥2
3 1 3 2 3 3
|
1
3
|
2
|
+ 1 𝑥2 + 1 𝑥2
3 2 3 3
|
1
|
2
|
+ 1 𝑥2 + 1 𝑥2
2 3
|
3
|
|
3
|
|
3
|
|
+ 2𝑥 2𝑥 3,
+ 2𝑥 3𝑥 1.
(3)
Lemma 1. The center x is a unique and attracting point of the QSO (3).
Proof. The equation 𝑉(x) = x has the form
1 2 1 2 1 2
𝑥1 = 3 𝑥1 + 3 𝑥2 + 3 𝑥3 + 2𝑥1𝑥2,
1 2 1 2 1 2
𝑥2 = 3 𝑥1 + 3 𝑥2 + 3 𝑥3 + 2𝑥2𝑥3,
(4)
1 2
|
+ 1 𝑥2 + 1 𝑥2
2 3
|
𝑥1
3
|
3
|
|
3
|
|
𝗅𝑥 3 =
+ 2𝑥 3𝑥 1.
As before, a solution of the system (4) is a fixed point. It is known that the QSO (3) is a continuous operator and that the simplex over a finite set is compact and convex, so that by the Brouwer fixed-point theorem there is always at least one fixed point. We rewrite the system (4) in the form
𝑥1 − 𝑥2 = 2𝑥2(𝑥1 − 𝑥3),
{𝑥2 − 𝑥3 = 2𝑥3(𝑥2 − 𝑥1),
𝑥2 − 𝑥1 = 2𝑥1(𝑥3 − 𝑥2).
(5)
Let x∗ ∈ 𝑆2 be a solution of the system (5). Assume that 𝑥∗ ≥ 𝑥∗. The rest is similar to this case.
1 2
Since 𝑥∗ ≥ 𝑥∗ from the first equation of the system (5) we get 𝑥∗ ≥ 𝑥∗. Using it from the second equation
1 2 1 3
of the system (5) we have 𝑥∗ ≥ 𝑥∗. Using it from the last equation we obtain that 𝑥∗ ≥ 𝑥∗ , that is
3 2 2 1
𝑥∗ ≥ 𝑥∗ ⇒ 𝑥∗ ≥ 𝑥∗ ⇒ 𝑥∗ ≥ 𝑥∗ ⇒ 𝑥∗ ≥ 𝑥∗ ⇒ 𝑥∗ ≥ 𝑥∗ ≥ 𝑥∗ ≥ 𝑥∗
∗ ∗ ∗ 1
1 2 1 3
3 2 2 1
1 3 2
1 ⇒ 𝑥1 = 𝑥2 = 𝑥3 = 3.
Therefore it follows that the center c = (1/3,1/3,1/3) is a unique fixed point.′
To find the type of the unique fixed point, using 𝑥3 = 1 − 𝑥1 − 𝑥2, we rewrite the quadratic opera- tor (3) in the form:
′ 4 2 2 2 4
4 2 1
{𝑥1 = − 3 𝑥1 + 3 𝑥2 − 3 𝑥1𝑥2 + 3 𝑥1 − 3 𝑥2 + 3 ,
(6)
′ 2 2
4 2 4
2 4 1
𝑥2 = 3 𝑥1 − 3 𝑥2 − 3 𝑥1𝑥2 − 3 𝑥1 + 3 𝑥2 + 3 .
where (𝑥1, 𝑥2) ∈ {(𝑥1, 𝑥2): 𝑥1, 𝑥2 ≥ 0,0 ≤ 𝑥1 + 𝑥2 ≤ 1}, and 𝑥1, 𝑥2 are the first two coordinates of the points of the simplex 𝑆2.
One has that the partial derivations has the form
1
∂ 𝑥𝘍 8
= −
∂𝑥1 3
𝑥1 −
4 4
3 𝑥2 + 3 ,
∂𝑥𝘍
1
=
∂𝑥2
4
3 𝑥2 −
4 2
3 𝑥1 − 3,
2
∂ 𝑥𝘍 4
= −
∂𝑥1 3
𝑥1 −
4 2
3 𝑥2 − 3 ,
∂𝑥𝘍
2
=
∂𝑥2
8
3 𝑥2 −
4 4
3 𝑥1 + 3
and their values at the center 𝐜 are equal
1
∂ 𝑥𝘍
(c) = 0,
∂𝑥1
∂ 𝑥𝘍 1
1
(c) = − ,
∂𝑥2 3
∂𝑥𝘍 2
2
(c) = − ,
∂𝑥1 3
∂ 𝑥𝘍
2
(c) = 0.
∂𝑥2
Thus, the Jacobian matrix of the operator (6) at the center c has the form:
0 − 1
3
𝐷 x𝑉(c) = ( − 2 0 )
3
Now let’s find the eigenvalues of the matrix 𝐷x𝑉(c):
−𝜇 − 1
3 √2
𝑑𝑒𝑡 (− 2
3
−𝜇) = 0 ⇒ 𝜇1,2 = ± 3 ⇒ |𝜇1,2| ≤ 1.
This shows that the center c = (1/3,1/3,1/3) is an attracting point. The proof of lemma completed.
Lemma 2. The function 𝜑(x) = |𝑥 1 − 𝑥 2| ⋅ |𝑥 2 − 𝑥 3| ⋅ |𝑥 3 − 𝑥 1| is a Lyapunov function for the operator (3).
Proof. For a x ∈ 𝑆 2 from (3) one has
𝜑 (𝑉(x) ) = |2𝑥 1𝑥 2 − 2𝑥 2𝑥 3| ⋅ |2𝑥 2𝑥 3 − 2𝑥 1𝑥 3| ⋅ |2𝑥 1𝑥 3 − 2𝑥 1𝑥 2|
3
3
= 8 |𝑥 2| ⋅ |𝑥 1 − 𝑥 3| ⋅ |𝑥 3| ⋅ |𝑥 2 − 𝑥 1| ⋅ |𝑥 1| ⋅ |𝑥 3 − 𝑥 2|
( ) 𝑥1+𝑥2+𝑥3 ( )
2 ( ) ( )
= 8𝑥1 ⋅ 𝑥2 ⋅ 𝑥3 ⋅ 𝜑 x
≤ 8 (
) ⋅ 𝜑 x
3
= ( )
3
⋅ 𝜑 x
≤ 𝜑 x .
Thus the function 𝜑(x) is a decreasing Lyapunov function for the operator (3). The proof of the lemma completed.
Lemma 3. lim 𝑉𝑛(x(0)) = c for any initial point x(0) ∈ 𝑆2.
𝑛→∞
Proof. By Lemma 2 the function 𝜑(x) is a decreasing Lyapunov function. So from the form of
QSO (3) for the 𝐱(𝒏), 𝑛 = 0,1,2, … one has
3
𝜑 x(𝑛+1) 2
(𝑛)
2 (3𝑛+1)
(0)
(
Therefore it follows that
) ≤ ( )
3
⋅ 𝜑(x
) ≤ ( )
3
⋅ 𝜑(x ).
lim 𝜑(x(𝑛)) = 0 ⇔ lim x(𝑛) = c
𝑛→∞
where we have used that 𝜑(x(0)) is a bounded value. The proof of the lemma completed.
𝑛→∞
Theorem. a) The QSO (3) has a unique fixed point c = (1/3,1/3,1/3);
The fixed point 𝐜 is an attracting point;
For any x(0) ∈ 𝑆2, the trajectory {x(𝑛)} tends to the fixed point 𝐜;
The QSO (3) is a regular transformation.
Proof. Collecting together all three Lemmas we complete the proof of Theorem.
References:
Bernstein S. (1942). The Annals of Math. Stat. 13, p. 53 ‒ 63.
Devaney R.L. (2003). An introduction to chaotic dynamical systems (New York, Westview Press).
3. Ganikhodzhaev R.N. (1992). Sb.Math. 183, p. 489 ‒ 497.
Jamilov U., Ladra M. (2016). Qual. Theory Dyn. Syst. 15, p. 257 ‒ 268.
Jamilov U., Ladra M. (2020). Qual. Theory Dyn. Syst. 19, p. 95 ‒ 106.
Lyubich Y.I. (1992). Mathematical Structures in Population Genetics (Berlin: Sprenger).
Mamurov B.J., Rozikov U.A., Xudayarov S.S. (2020). Markov Pros. Relat.Fields 26, 915 ‒ 933.
Rozikov U.A., Zhamilov U.U. (2008). Math. Notes. 83, p. 554 ‒ 559.
9. Zhamilov U.U., Rozikov U.A. (2009). Sb. Math. 200, p. 1339 ‒1351.
Абдуллаева Хулкар Рахматуллаевна (Республика Маънавият ва маърифат маркази
мустақил тадқиқотчи-изланувчиси) ЭПИСТЕМОЛОГИЯНИНГ АХЛОҚИЙ ЖИҲАТЛАРИ
Аннотация. Мақолада эпистемологик масалалар, инсон билимлари даражаси, илмий билим- лар ва фаннинг ривожланиши ахлоқий жиҳатлари юзасидан фикрлар тадқиқ этилган. Илмий би- лимлар коммертизациялашуви, олимнинг бурчи ва масъулияти, фаннинг сиёсатга хизмат қилиши қандай оқибатларга олиб келиши ҳақида фикр-мулоҳазалар билдирилган, илмий билимларнинг фан учун илмий билишнинг муҳимлиги, фундаментал фанларнинг зарурияти очиб берилган.
Аннотация. В статье рассматриваются такие вопросы как эпистемологические ценнос- ти, уровень человеческих знаний, научные знания и моральные аспекты развития науки. Были вы- сказаны мнения о коммерциализации научных знаний, долге и ответственности ученого, послед- ствиях служения науки политике, важности научных знаний для науки, раскрыта необходимость фундаментальных наук.
Annotation. The article deals with such issues as epistemological values, the level of human know- ledge, scientific knowledge and moral aspects of the development of science. Opinions were expressed on the commercialization of scientific knowledge, the duty and responsibility of a scientist, the consequences of serving science to politics, the importance of scientific knowledge for science, the need for fundamental sciences was revealed.
Калит сўзлар: эпистемология, фан коммертизациялашуви, сиёсат, ахлоқ ва қадрият, лойи- ҳа, ташқи ва ички омиллар, экстернализм, “салбий этика”.
Do'stlaringiz bilan baham: |