Ориентированные и неориентированные графы план Введение Основные определения



Download 0,52 Mb.
bet5/7
Sana12.04.2022
Hajmi0,52 Mb.
#544903
1   2   3   4   5   6   7
Теорема (о пяти красках)
Каждый планарный граф можно так раскрасить, используя пять цветов, что любые две смежные вершины будут окрашены в разные цвета.


Теорема (о четырех красках)
Каждый планарный граф можно так раскрасить, используя четыре цвета, что любые две смежные вершины будут окрашены в разные цвета.
Отметим самую известную интерпретацию проблемы о четырех красках. Пусть имеется географическая карта. Можно ли, используя только 4 краски, изобразить эту карту так, чтобы соседние страны (имеющие общую границу) были окрашены в разный цвет? Понятно, что в соответствующем графе вершинами являются страны, а смежными вершинами являются соседние страны. Ясно, что полученный граф является планарным, и после 1976 г. ответ на этот вопрос является положительным.
Раскраска ребер
Заметим, что в теории графов ставится часто вопрос о реберной раскраске графов, когда цвета назначаются ребрам. Какое минимальное число цветов (это число иногда называют реберно-хроматическим) нужно, чтобы раскрасить ребра графа так, что любые 2 смежных ребра (т.е. 2 ребра, имеющих общую вершину) были бы окрашены в разный цвет? Для реберно-хроматического числа графа справедлива гораздо более точная оценка, чем для просто хроматического числа, а именно, верна следующая, в какой-то степени удивительная, теорема.
Теорема Визинга. Если в графе максимальная степень вершин равна , то реберно-хроматическое число равно либо r, либо r +1.
Заметим, что до сих пор нет «хороших» критериев для графов, когда же именно реберно-хроматическое число равно r, а когда r + 1.
Раскраска ребер (или реберная раскраска) называется правильной, если любые два ребра, имеющие общую вершину, окрашены в разные цвета. Минимальное число цветов, необходимое для правильной раскраски ребер графа , называется хроматическим индексом графа и обозначается через .
Очевидно, что простейший алгоритм нахождения реберно-хроматического числа (и соответствующей раскраски ребер) состоит в следующем: по данному графу строим так называемый двойственный граф: ребра графа соответствуют вершинам нового (двойственного) графа, причем, если 2 ребра имеют общую вершину, то они являются смежными и в двойственном графе соединены ребром. После этого раскрашиваем наилучшим образом вершины двойственного графа и, переходя к «старому» графу, получаем (одну из возможных) наилучших реберных раскрасок графов.
В заключение отметим, что реберная раскраска часто применяется при конструировании различных устройств, где провода, соединяющиеся в одной вершине, должны (для удобства) иметь разные цвета.

Download 0,52 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish