On the theorem of frullani



Download 52,19 Kb.
bet7/7
Sana26.03.2022
Hajmi52,19 Kb.
#510888
1   2   3   4   5   6   7
Bog'liq
S0002-9939-1990-1007485-4

Theorem 6. Let f: R —► C be Denjoy-Perron integrable. Then the Fourier transform of f has the value (DP) f(t)dt at 0.
Proof. Fix cp € 31. We must prove
л / r + oo \ / r + OO \
lim(/(Ax), ?(x)) = ((DP) f(t) dt) ( I
\ J — oo / \J— oo /
Let us observe that
(/(Ax), (p(x)) = lf(x),
(y) = lf(t), \ф (y) (t)\ ,
and since
f e~2nXI dx = f
2nx2‘ dt - $(At),
J— oo \ ^ / J— oo
we have
г+oo
(/(Ax), (x)) = (f(t),
So it remains to prove that


If we put F(x) = (DP) f(t)dt, then lim^ F(x) = lim;|._(_oo F(x) - 0. We know that ф is of bounded variation. So, given e > 0, there exists M > 0 such that, for every у > M and A e R, we have



F(t^(At)
[ У F(tW(Xt)
J—oo



I^CvWy)| < e, and

|F(-y)p(-Ay)|

Moreover, by Henstock’s lemma (McLeod [18], p. 74), there exists a function 8: R —> У, being У the set of closed intervals of R, verifying that £ €
If a = t0 < r, < ••• < tn = b, £ke [tk_i,tk] c 8(£k), (b, +oo) c a)
c J(-oo), then



n
L
k=\

We can also assume that, for every & R, the oscillation of F on b(£) is less than e/(l + V), where V = \


is the total variation of
over R,
and such that <5(+oo) с [M, +oo] and <5(-oo) c [-oo, -M].
Then, if a = tQ < f < ••• < tn = b, £k & [rA_,, tk] c S({k), (b, +oo) c



License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Download 52,19 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish