On the theorem of frullani



Download 52,19 Kb.
bet2/7
Sana26.03.2022
Hajmi52,19 Kb.
#510888
1   2   3   4   5   6   7
Bog'liq
S0002-9939-1990-1007485-4

Theorem. Assume f(x) locally integrable in (0,+oo). Then we have, if both limits

  1. w(/) — lim x [ Щ^-dt, M(f) = lim — f f(t)dt

x—>0+ Jx t x^+ooXJi
exist, then for any positive a, b,
... [°° - f{bx) , .a

  1. у J ’ *—-dx = (M(f)- w(/))log^.

Conversely, if the integral in (4) is convergent for a set of couples ofpositive values of a and b, such that a/b runs through a set of positive measure, both M(f) and m(f) exist.
A. Ostrowski said that the proof of this result was difficult and would be given elsewhere. The theorem was proved by R. P. Agnew in 1951 [2] and A. Ostrowski’s proof appeared in 1976 [21]. Finally F. G. Tricomi ([25], pp. 49­51 and [24]) and A. Ostrowski [19] generalized this formula in several ways.
Now, before introducing our theorem, let us consider the following: Let
be a linear space of real functions defined on (0, +oo) and I : & -+ R a linear form, that we denote by 1(f) = j£° f(x) dx, such that, if f e % and a > 0, then the function g defined by g(x) = f(ax) belongs to & and
fOO POO
a f(ax)dx = f(x)dx.
Jo Jo

Then, given f: (0, +oo) —> R such that (f(ax) - f(bx))/x belongs to %, for all positive a and b, there exists a group homomorphism
: R+ —> R such that
/(.X) - ЛМ .
Jo x \b)
This is contained in essence in A. Ostrowski [21].
If we could prove that (p is measurable, it would follow that ^(/) = A logZ, where A is independent of t.
We thought about proving our theorem when we made the following remark about Frullani’s integrals: In every concrete example, the axiom “ (p is measur­able” is consistent with the ordinary theory of sets. This follows from Solovay’s theorem [23]:

Download 52,19 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish