On the theorem of frullani


Theorem 1. Let f: [0, +oo) —► R



Download 52,19 Kb.
bet4/7
Sana26.03.2022
Hajmi52,19 Kb.
#510888
1   2   3   4   5   6   7
Bog'liq
S0002-9939-1990-1007485-4

Theorem 1. Let f: [0, +oo) —► R be a function such that (f(ax)- f(bx))/x is integrable on [0, +oo) for every pair ofpositive real numbers a, b. Then there exists a constant A € R such that

(6)
a


for every a, b > 0.
Proof. First observe that the measurability of f is not a hypothesis of the theorem. Let us take x = e‘, a = log a and /? — log 6. We obtain that (6) is equivalent to
о X b
Г”*"00 f , . . п л
/ oo {/(e }f(e }} dt = A(a " •
So it suffices to prove the theorem that follows.
Theorem 2. Let g: R -» R be a function such that g(x + a) - g(x + /?) is Lebesgue integrable for every pair of real numbers a, p. Then there exists a constant A such that
r-boo

(7)
{g(x + a) — g(x + P)} dx = A(a — P).
J — oo
Proof. Let hit be defined by hfx) = g(x+a)-g(x). We know that ha G i’(R) for every real number a.
Moreover, it is obvious that Aft(x) + h^(x + a) = hn+p(x).
Hence, A ((x) + hfi(x + a) = h^(x) + hn(x + P).
All these functions belong to L'(R), so we can apply Fourier’s transform and we ootain
A„(x) + е2”'"лЛд(х) = hfi(x) + e2n,fixh(fx).
Thus we have
hAx) — —h (x).
Let us observe that /г^(х) is continuous and <7()3) = f^{g(x+P)-g(x)} dx = hp(O), and so
G(B) = lim -—(x) = ~G(a).
oi-
e2n,,,x " a v
Now, if we choose A = (7(1), we have G(p) — Aft, which leads to



(a — P)A — G(a —

a-p)-g(x)}dx


J —oo
/4-00
{g(x + a.) — g(x + p)} dx,
-oo
getting Theorem 2.
The next theorem, which contains the example we talked about in the intro­duction, must be compared with C. Burstin’s theorem: A Lebesgue measurable function f: R —> R having arbitrary small periods is a constant a.e. (cf. R. Cig- noli and J. Hounie [6] or J. M. Henle [12]).

Download 52,19 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish