«oliy matematika» fanining «differensial tenglamalar»



Download 0,51 Mb.
bet6/12
Sana30.04.2022
Hajmi0,51 Mb.
#595121
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
«oliy matematika» fanining «differensial tenglamalar»

Lagranj tenglamasi


Lagranj tenglamasi deb




y=x ( )+( ) (3.9)

ko’rinishdagi tenglamaga aytiladi.


Bu tenglama ham parametr kiritish bilan sodda integrallanadi:
= deb,
y=x()+()
tenglamani hosil qilamiz. Bu tenglamani x ga nisbatan differensiallab
(3.10)
Hosil bo’lgan tenglama x() va dx/d ga nisbatan chiziqli tenglamadir. Uni yechib F(x, ,c)=0 ni hosil qilamiz. Demak, Lagranj tenglamasini yechimi

parametrik ko’rinishda bo’ladi.
(3.10) tenglamani hosil qilishda deb qaralgan edi. Demak, bunda =const yechimlar, agar ular mavjud bo’lsa, yo’qotilgan edi. =const bo’lsa, u holda (3.10­1) tenglama faqat , bo’lganda bajariladi.
Demak, agar tenglama haqiqiy r=ri ildizlarga ega bo’lsa, yuqoridagi yechimlarga yana
y=x ()+(), =i

yechimlarni ham qo’shish kerak bo’ladi.





Klero tenglamasi


-()0 bo’lsin. d/dx ga bo’lishdan =с, с=const yechimlar yo’qotilgan bo’ladi. Bu holda ( )= bo’lib, (3.9) tenglama


y=x +( ) (3.11)
ko’rinishiga keladi va bu tenglama- Klero tenglamasi deyiladi.
Bu teglamani yechish uchun = deb belgilash kiritamiz.
Natijada y=x+() ni hosil qilamiz.
Bu tenglamani x bo’yicha differensiallab
=+xd/dx+’()d/dx
yoki

tenglamani hosil qilamiz. Bundan d/dx=0, demak =C yoki x+’()=0.
=с da yechimdan
y=Cx+(c)
ikkinchi holda esa yechim

ko’rinishda bo’ladi.

Nazorat savollari


1. To’la differensial tenglama deb qanday differensial


tenglamalarga aytiladi?
2. Integrallovchi ku’paytuvchi deb kanday funksiyaga aytiladi?
3. Xosilaga nisbatan yechilmagan differensial tenglamalar,
umumiy ko’rinishi.
4. Xosilaga nisbatan yechilmagan differensial tenglamalar,
xususiy xollari.
5. Lagranj tenglamasi.
6. Klero tenglamasi.



Download 0,51 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish