/7-..
Г
А =
а,,-,
п
2
к в а д р а т м а т р и ц а т р а н с п о н и р л а н г а н А ' м а т р и ц а г а т енг б у л с а , у х о л д а
А симметрик матрица д ей и л а д и .
2- §. М а т р и ц а л а р у с т и д а а м а л л а р ва уларнинг
х о сс ал ар и
И к к и т а [m X п\- т а р т и б л и
А =
а И
а
12
а 2|
а 22
12п
в =
Ь\\
Ь ,2
Ь
2
\
Ь22
ь |„
^
2,1
(5)
м а т р и ц а л а р б е р и л г а н булсин. Б у м а т р и ц а л а р н и н г мос э л ем е н т л а р и
й и г и н д и л а р и д а н т а ш к и л т оп г ан у ш б у [m X п\- т а р т и б л и
« 2 1 +
^ 2 1
« 1 2 + ^ 1 2
• •
« 2 2 + ^ 2 2
• • •
« 1 „ + ^ I n
« 2 / ,
“ t“
^ 2 n
« m l “ I-
Ь
m l
« т 2 +
Ь
т 2
•
•
« т / ,
1
Ь mn
i:\72
м а т р и ц а Л ва В м а т р и ц а л а р й и г и н д и с и д еб а т а л а д и ва А - \ - В каби
б е л г ил а н ад и.
А ва В м а т р и ц а л а р н и н г мос э л е м е н т л а р и а й и р м а л а р и д а н т а ш к и л
т оп г ан у ш б у [т Х « ] - т а р ти б л и
а 1Г
« 2 Г
-Ь п
■Ьо 1
«12— ^12 -
«22
^22 •••
а\ п— Ь\п
2 п
м а т р и ц а А м а т р и ц а д а н В м а т р и ц а н и н г а й и р м а с и д е й и л а д и ва Л — В
к аб и б е л г и л а н ад и.
Ю к о р и д а а й т и л г а н л а р д а н
1 ° .
Л + 0
=
0
+ Л = Л ,
2°.
А + В = В + А
б у л и ши н и к у ри ш кийин эма с , б у н д а 0 -— нол м а т р и ц а .
Б и р о р X сон ва
Л =
« 1 1
« 1 2
« 2 1
« 2 2
« 1 я
«
2,1
‘ m2
м а т р и ц а н и к а р а й л и к . Бу Л м а т р и ц а н и н г х а р бир э л емент ини А, сонга
к у п а й т и р г а н д а хосил б у л г а н м а т р и ц а г а X сон б ил а н Л м а т р и ц а к у
пайтмаси д е й и л а д и ва АЛ каб и б е л г и л а н а д и . Д е м а к ,
Х а и
Ха 12
.
■ Ъа\п
ХА =
Ха%\
Ха
22
•
Ха2п
^«/п1
Х а
т2
• •
Ха
,п
п
Р а в ш а н к и , А ва В м а т р и ц а л а р х а м д а ихтиёрий X ва р сонлар учун:
3°
Х ( ц А ) — (Ар,)Л,
4°.
Х ( А + В ) = Х А + Х В ,
5°.
( X \i) А = Х А [ i A.
1- м и с о л. Аг ар
А =
2
4
1
0
2
1
в =
- 1 0
2
1
1
2
б у л с а , Л + й , А — В, 2 А — З В м а т р и ц а л а р н и топинг.
- '73
www^Orbita^U^Jojtubx^
Икк и м а т р и ц а йигиндиси, а й и р м а с и х,амда м а т р и ц а н и сонга
к у п а й т ир и ш к о и д а л а р и д а н ф о й д а л а н и б , и з л а н а ё т г а н м а т р и ц а л а р н и
т о п а м и з :
Л + В =
2
— 1
4
1
0
2
-II
0
2
11
1
1
2 1
=
2 + 0
4 + 2
1 - 1
— 1 + 1
0 + 1
2 + 2
2
6
2
0
1
4
’
А ~ В =
2
— 1
4
1
0
2
—
0
2
1
1
1
2
=
2 - 0
4 — 2
1 — 1
- 1 - 1
0 — 1
2 - 2
2
2
0
— 2
— 1
0
’
2 А - 3 В = 2-
2
4
— 1
0
1
2
— 3-
0
2
1
1
1
2
=
4
— 2
8
2
0
4
0
'6
3
4 — 0
8 — 6
2 — 3
4
2
— 1
3
3
6
- 2 - 3
0 — 3
4 — 6
— 5
— 3
— 2
Энди икки м а т р и ц а к у п а й т м а с и т у шу н ч а си н и к е л т ир а м и з . Бу
а м а л н и к и р и т и ш д а к у п а й т и р и л а д и г а н м а т р и ц а л а р н и н г биринчиси-
нинг у с т у н л а р и сони ик кинчис ининг й у л л а р и сонига т енг б у л и ши
т а л а б ки л и н а д и .
Ф а р а з к и л а й л и к , [ т Х п ] - т а р ти бл и
а
11
а,2
. .
•
Л =
а2.
а22
. .
•
а2«
О ml
а т 2
•
•
•
& тп
X k \ т а р т и б л и
Ьи
* 1 2
•
■
b
I*
В =
6 2о
.
* 2 *
Ьп
1
Ь п 2
•
•
Ьпк
/
м а т р и ц а б е р и л г а н булсин. А м а т р и ц а н и н г /- йул э л е м е н т л а р и ац. а,2,
... а,„ ни ( / = 1 , 2 , ..., т ) мос р а в и ш д а В м а т р и ц а н и н г / - у с т у н
э л е м е н т л а р и Ь\„ Ь-ц, bni га ( / ' = 1 , 2 , ..., k ) к у п а й т и р и б у ш б у
, 74
dij = a, i b i j + a,-2&2/ +
-ainb„
( 6 )
m; / = 1 , 2 ........ *) й и г и н д и л а р н и хосил к и л а м и з . Бу
с о н л а р д а н т у з и л г а н [ т Х * ] - т а р т и б л и у ш б у
d\\
d i2
d\k
d 2\
d 22
• •
d
2
k
“ ml
d
m2
•
■
d
,
м а т р и ц а б е р и л г а н Л ва В м а т р и ц а л а р к у п а й т м а с и д е й и л а д и ва А - В
ка б и ё з и л а д и .
Д е м а к , А - В м а т р и ц а н и н г х а р б ир элементи (Ь) к у р и н и ш д а г и
й и г и н д и л а р д а н ибора т.
2- м и с о л. Уш б у
2
1
- 1
1
- 1
A =
0
1
o
B =
0
1
0
0
— 1
1
0
м а т р и ц а л а р н и н г к у п а й т ма с и н и топинг. Б у м а т р и ц а л а р к у п а й т м а с и
[ 3 К 2 ] - т а р т и б л и у ш б у
i
A - B =
d\\
d i2
d 21
d 22
^3i
d
32
м а т р и ц а були б, б у н д а
d „ = 2
4
1 + 1 - 0 + ( — 1) • 1 = 1,
d i2 = 2 ( — 1) + 1 • 1 + ( — 1) • 0 = —
di\ =v0
1 + 1 - 0 + 0- 1 = 0 ,
d%2 = 0 ( — 1) + 1 • 1 + 0 - 0 = 1,
dz\ — 0 i +
о
-
о
+ ( — 1) ; 1 = — 1,
<^32 = 0
( — 1) + 0 - 1 + ( — 1) • 0 = 0
б у ла д и . Д е м а к ,
_ J
A - B =
1
- 1
0
1
- 1
0
3- м и с о л. Аг ар
7 . 12
26
45
a
=
— 4
7
B =
15
26
б у лс а , А В ва В А м а т р и ц а л а р н и топинг.
75
www^Orbita^U^Jajt^
ч»
Р а в ш а н к и ,
А - В =
7
— 12
26
45
' - 4
7
15
26
7 - 2 6 - h ( — 12) -15
7 - 4 5 + ( — 1 2 ) - 2 6
— 4 - 2 6 + 7 - 1 5
— 4 - 4 5 + 7 - 2 6
2
1
3 2
В А
26
45
1
7
~ 1 2 H
15
26
1 - 4
7 1|
26 - 7 + 45 - ( — 4)
2 6 - ( — 1 2 ) + 4 5 - 7
1 5 - 7 + 2 6 - ( — 4)
1 5 - ( - 1 2 ) + 2 6 - 7
Ш у н д а й ки л иб , б е р и л г а н м а т р и ц а л а р учун
А В =
В А —
булиб,
4- м и с о л. А г а р
А В = В А.
2
0
1
— 3
1
0
А =
— 2
3
2
, в =
0
2
1
4
— 1
5
0
— 1
3
б у л с а , А В ва В А м а т р и ц а л а р н и топинг.
Б е р и л г а н м а т р и ц а л а р н и н г к у п а й т м а с и н и т оп а ми з :
2
0
1
—
3
1
0
А В =
— 2
3
2
•
0
2
1
4
— 1 5
0
- 1
3
2 •
( —
3) + 0 - 0 + 1 - 0
2 -
1
+ 0 - 2 + 1
• ( —
—
—
2 •
( —
3) + . 3 - 0 + 2 - 0
- 2 - 1 + 3 - 2 + 2-
( —
4 •
( —
3)
—
1 - 0 + 5 - 0
4 - 1 +
( —
1
)
- 2
+ 5
2 - 0 + 0 - 1 + 1 - 3
- 2 - 0 + 3 - 1 + 2 - 3
4 - 0 + ( — I ) ■ 1 + 5 - 3
— 6
1
3
=■
6
2
9
- 12
— 3
14
- 3
1
0
2
0
1
В А =
0
2
1
- 2
3
2
=
0
- 1
3
4
- 1
5
76
- 3 - 2 + 1 • ( — 2) + 0 - 4
- 3 - 0 + 1 - 3 + 0- ( — 1)
— 3
1 + 1 - 2 + 0 - 5
0 - 2 . + 2- ( - - 2 ) + 1- 4
0 - 0 + 2 - 3 + 1 • ( — 1)
0- 1 + 2
2 + 1 - 5
0 - 2 + 1 — 1) ( - 2 ) + 3 - 4
0 - 0 + ( — 1) - 3 + 3 ( — 1)
0- 1 + ( - 1 ) - 2 + 3 - 5
-8
О
14
3
5
— 6
-
1
9
1 3
Д е м а к ,
- 6
1
3
— 8
3
— 1
А В =
6
2
9
II
CQ
0
5
9
— 12
- 3
14
14
— 6
1 3
Бу х о л д а
А В ф В А .
К е л т и р и л г а н м и с о л л а р д а н к у р и н а д и к и , икки м а т р и ц а к у п а й т м а с и
учун урин а л м а ш т и р и ш к о и д а с и , у м у м а н а й т г а н д а , урин ли б у л м а с
экан.
Бирок.,
[п Х « ] - т а р т и б л и А м а т р и ц а б ил а н
[ п Х я ] - т а р т и б л и
б ир л ик
1
0 0
. . .
0
О
I о
. . .
о
м а т р и ц а учун х а р доим
О О О . .
А Е = Е А = А
т е нг л и к у ри н л и б у ла д и.
А В ва С м а т р и ц а л а р б е р и л г а н булсин. У х о л д а
6°’.
(А + В ) - С = А С + В С
7°. ( А - В ) - С = А ■ ( В - С )
б у л а д и . Бу т е н г л и к л а р н и н г урин ли б у л и ш и м а т р и ц а л а р йигиндиси,
к у п а й т м а с и х а м д а т енг лиг и т у ш у н ч а л а р и д а н кел иб ч и к а д и . Мис ол
т а р и к а с и д а
а и
а 12
«13
а 21
а 22
«23
«31
а 32
«33
В -
11
Ь 12
* 13
21
Ь 22
*23
31
*32
*33
С =
с и
С 21
С 31
С12
С13
С 2 2
С 2
з
С32
С33
м а т р и ц а л а р учун 6"- х о с с а н и н г урин ли б у ли ши н и к у р с а т а м и з .
Р а в ш а н к и ,
a 1 + * 11
« 1 2 + * 12
« 1 3 + * 13
А + В =
а 2 + *21
« 2 2 + *22
« 2 3 + *23
а з + *31
« 3 2 + *32
« 3 3 + *33
, ) f 7
www.Orbita.Uz kutubxonasi
•иди ( А - \ - В ) - С ни
т оп а ми з .
О ц + f t n
« 1 2 + ^ 12
« 1 3 + * 1 3
(
Л - \ - В ) - С =
^ 2 1
* 2 1
«
2 2
+
* 2 2
« 2 3 + * 23
« 3 1 + *31
« 3 2 + * 3 2
« 3 3 + * 3 3
Аг а р
с II
С
21
с.31
С 12
С 13
С 22
С 23
'3 2
'3 3
+
« П С П +
« 1 2 ^ 2 1 + «13^31
« 3 1 С 11 + « 3 2 ^ 2 1 + «33^31
* 11^1, + * 12^21 + * 13^31
*31^11 + * 3 2 ^ 2 1 + * 3 3 ^ 3 1
А • С =
« и
« 2 1
«I
23
«22
«
«3 1
« 3 2
« 3 3
« 1 1 С 11 + «1 2 ^2 1 + « 1 3 С 31
« 1 1 С 1 3 + « 1 2 ^ 2 3 + « 1 3 С 33
« 3 1 ^ 1 . 3 + « 3 2 ^ 2 3 + a , i f зз
« 1 1 е 1 3 + * 1 2 ^ 2 3 + * 13С 33
* 31е 1 3 + * 3 2 ^ 2 3 + * 3 3 ^ 3 3
С 11
С 12
С 13
С2,
С2 2
С2з
С 31
С 32
С 33
« 1 1 е 1 3 + « 1 2 ^ 2 3 + « 1 3 С 33
а 31с 11 + « 3 2 с 21 + «33р31 '
« 3 1 с 1 3 + « 3 2 с 2 3 + а 33е 33
Ь
В-С--
II
*
12
* 1 3
21
* 2 2
* 2 3
31
* 3 2
* 3 3
12
С
21
+ *
3^31
С \\
С \2
С 13
С 21
С 22
С 23
С 31
С 32
С 33
+
* 11^ I I + *12^21 + * 13^31
‘
* 11<^ 1 3 + *!_•*' 3 + * 13^33
* 3 1 С П + * 3 2 С 21 + * 3 3 С 31 ’
* 3 1 ^ 1 3 + * 3 2 ^ 2 3 + * 3 3 ^ 3 3
б у л и ши н и э ъ т и б о р г а о л сак, ю к о р и д а г и т е н г л и к
(А + В ) - С = А - С + В - С
к у р и н и ш г а к е л ишин и т о п а м и з . Б у э с а к а р а л а ё т г а н м а т р и ц а л а р учун
6°- х о с с а н и н г ури н л и б у ли ши н и к у р с а т а ди .
Б и з ю к о р и д а икки м а т р и ц а к у п а й т м а с и учун у ри н а л м а ш т и р и ш
конуни, у м ум а н а й т г а н д а , ури н л и э м а сл иг ин и курдик. А мм о у л а р н и н г
д е т е р м и н а н т л а р и учун к у й и д а г и т а с д и к у р ин ли б ула ди .
[п X п]- т а р т и б л и А ва В м а т р и ц а л а р к у п а й т м а с и н и н г д ет е рми-
нанти шу м а т р и ц а д е т е р м и н а н т л а р и к у п а й т м а с и г а тенг:
\ А В \ = \ В - А \ = \ А \ - \ В \
78
Do'stlaringiz bilan baham: |