O n f e r e n c e



Download 3,85 Mb.
Pdf ko'rish
bet107/342
Sana11.08.2022
Hajmi3,85 Mb.
#846838
1   ...   103   104   105   106   107   108   109   110   ...   342
Bog'liq
The Efficacy of Legal Videos in enhancin(1)

Short paper 
Introduction 
Despite considerable advances in NLP-based feedback generation, a complete analysis of 
all aspects of natural language is still a very challenging problem that remains to be 
solved in order to meet a wider range of learning needs. One such need is mastering the 
writing conventions of specific academic genres. While research in discourse analysis and 
English for academic purposes has a well-established genre-analysis agenda (Biber, 
Connor, & Upton, 2007; Brett, 1994; Holmes, 1997; Hopkins & Dudley-Evans, 1988; 
Hyland, 2000; Ozturk, 2007; Samraj, 2005; Swales & Najjar, 1987; Williams, 1999), this 
agenda still needs to be extrapolated to interdisciplinary research involving applied 
linguistics and computer science experts, whose combined efforts would result in the 
creation of new needs-based intelligent feedback systems. 
This study is beginning to fill this void. Our main goal was to develop an analysis engine 
for an automated writing evaluation (AWE) system that analyzes the rhetorical structure 
of research articles (RA) in terms of communicative moves and functional steps (see 
Swales, 1981, 1990, 2004) and provides feedback on the communicative effectiveness of 
learner discourse compared to the RA genre norms in learners’ particular disciplines. In 
this paper, we focus only on the analyzer for the Introduction section. We employed a 3-
step process of discourse structure identification, which included: (1) feature selection 
from annotated text data, (2) sentence representation, and (3) training leading to 
sentence-level classification into moves and steps.
Automated categorization of discourse and genre
Text categorization, also known as text classification and sometimes referred to as topic 
spotting, is a procedure by which natural language texts are labeled with thematic 
categories from an existing predefined set. A popular approach to text classification is 
machine learning. Research has shown that classifiers developed with machine learning 
techniques are highly effective. Of a multitude of such techniques, (e.g., Naïve Bayes, 
Multinomial Naïve Bayes, Decision Tree, Rule-based, Neural Network, Maximum Entropy, 
Regression, etc.), the Support Vector Machine (SVM) classifiers have been widely 
implemented (Basu et al., 2003; Burges, 1998; Cortes & Vapnik, 1995; Joachims, 1998; 
Vapnik, 1995; Xuegong, 2000) and found to “deliver top
-
notch performance” (Sebastiani, 
2002, p. 39).
In text classification tasks, texts have traditionally been considered in terms of their 
structure and content. Classification in terms of genre-specific functional roles of texts is 
a research territory yet to be explored. Although this task is particularly important for the 
advancement of the state-of-the-art of intelligent feedback systems, efforts in this area 
are still scarce. Anthony and Lashika (2003) developed a genre-based software tool, the 
Mover
, where they chose Naïve Bayes classification as the supervised learning approach 
to categorizing the rhetorical structure of Abstracts into rhetorical moves. Pendar and 
Cotos (2008) approached a very similar genre classification task to develop a web-based 
application called 
IADE
, which targeted research article Introduction sections. Their 
choice of the supervised learning technique was an SVM classifier, which performed best 
with unigram and trigram models.


-119- 
2014 CALL Conference 
LINGUAPOLIS
www.antwerpcall.be 
Based on the output of the classifier, 
IADE
operationalized feedback generation in two 
ways: as color-coded (representing the move of each sentence with a respective move 
color) and as numerical (showing percentages that reflected a comparison of the 
distribution of the moves in learners’ drafts versus a corpus of human annotated 
Introductions in their discipline).
Empirical evidence speaks to the effectiveness of rhetorical feedback and potential 
benefits for language learners (Cotos, 2010, 2011, 2012); therefore, we are scaling up to 
a full-fledged genre-based AWE program for research article writing 

 
the 
Research 
Writing Tutor (RWT)
(Cotos & Huffman, 2013). In this paper, we present only part of a 
bigger development project and focus on the machine learning approach employed to 
build the Introductions analysis and feedback engine of the 
RWT
.

Download 3,85 Mb.

Do'stlaringiz bilan baham:
1   ...   103   104   105   106   107   108   109   110   ...   342




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish