III. Xulosa
Noma`lum parametr uchun siljimagan baholar to`plamini U bilan belgilaylik. Oldingi boblardan ma`lumki, t.m. dispersiyasi shu t.m.ning qiymatlari uning matematik kutilmasi atrofida qanchalik zich yoki tarqoq joylashganligining mezoni bo`ladi. Shuning uchun, tabiiy, siljimagan baholarni ularning dispersiyasiga ko`ra taqqoslaymiz. Faraz qilaylik, ( ) va ( ) lar noma`lum parametr uchun siljimagan baholar bo`lsin, ( ) va ( ) . Agarda shu statistikalar uchun
( )< ( )
munosabat bajarilsa, ( ) baho ( ) bahodan aniqroq baho deyiladi.
Demak, bitta parametr uchun bir necha siljimagan baholar mavjud bo`lsa, uning statistik bahosi sifatida aniqroq bahoni qabul qilish maqsadga muvofiq bo`ladi. Yuqorida biz noma`lum matematik kutilma uchun ikkita siljimagan va -lardan iborat bo`lgan baholarni ko`rdik. Endi ularni taqqoslaylik. Dispersiyani hisoblash qoidasiga asosan:
va bo`ladi. yuqorida keltirilgan taqqoslash qoidasiga muvofiq, ko`rinib turibdiki baho bahoga nisbatan aniqroq bo`ladi.
Biz oldingi paragraflarda statistik baholar va ularning xossalari bilan tanishdik. Statistik baholar qanday topiladi? Mana shu savolga javob beramiz. Statistik baholar tuzishning ikki usulini ko`rib chiqamiz.
Ishonchlilik oralig‘i. Oldingi paragraflarda biz noma’lum parametrlarning nuqtaviy statistik baholari bilan tanishdik. Tuzilgan nuqtaviy baholar tanlanmaning aniq funksiyalari bo‘lgan t.m. bo‘lib, ular noma’lum parametrlarning asl qiymatiga yaqin bo‘lgan nuqtani aniqlab beradi xolos. Ko‘p masalalarda noma’lum parametrlarni statistik baholash bilan birgalikda bu bahoning aniqligini, ishonchliligini topish talab etiladi.
IV. Foydalanilgan adabiyotlar
Аbdushukurov А.А. Xi-kvadrat kriteriysi: nazariyasi va tatbiqi, O‘zMU, 2006.
Аbdushukurov А.А., Azlarov T.A., Djamirzayev A.A. Ehtimollar nazariyasi va matematik statistikadan misol va masalalar to‘plami. Toshkent «Universitet», 2003.
Azlarov T.A., Abdushukurov A.A. Ehtimollar nazariyasi va matematik statistikadan Inglizcha-ruscha-o‘zbekcha lug‘at. Toshkent: «Universitet», 2005.
Abdushukurov A.A. Ehtimollar nazariyasi. Ma’ruzalar matni. Toshkent: «Universitet», 2000.
Бочаров П. П., Печинкин А. В. Теория вероятностей. Математическая статистика. - 2-е изд. - М.: ФИЗМАТЛИТ, 2005.
Ватутин В.А., Ивченко Г.И., Медведев Ю.И., Чистяков В.П. Теория вероятностей и математическая статистика в задачах М.: 2003.
Ивченко Г.И., Медведев Ю.И. Математическая статистика. М.: Высшая школа, 1984.
Кибзун А. И., Горяинова Е. Р., Наумов А. В., Сиротин А. Н. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами / Учебн. пособие. - М.: ФИЗМАТЛИТ, 2002.
Кибзун А.И., Панков А.Р., Сиротин А.Н. Учебное пособие по теории вероятностей. — М.: Изд-во МАИ, 1993.
Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. 2-е изд., перераб. и доп.- М.: ЮНИТИДАНА, 2004.
http://www.lib.homelinex.org/math/;
http://www.eknigu.com/lib/mathematics/;
Do'stlaringiz bilan baham: |