Название обратной тригонометрической функции


Использование в геометрии[править | править код]



Download 108,88 Kb.
bet9/9
Sana27.06.2022
Hajmi108,88 Kb.
#710460
1   2   3   4   5   6   7   8   9
Bog'liq
Обратные тригонометрические функции

Использование в геометрии[править | править код]



Прямоугольный треугольник ABC
Обратные тригонометрические функции используются для вычисления углов треугольника, если известны его стороны, например, с помощью теоремы косинусов.
В прямоугольном треугольнике эти функции от отношений сторон сразу дают угол. Так, если катет длины {\displaystyle a} является противолежащим для угла {\displaystyle \alpha }, то
{\displaystyle \alpha =\arcsin(a/c)=\arccos(b/c)=\operatorname {arctg} (a/b)=\operatorname {arccosec} (c/a)=\operatorname {arcsec}(c/b)=\operatorname {arcctg} (b/a).}

Связь с натуральным логарифмом[править | править код]


Для вычисления значений обратных тригонометрических функций от комплексного аргумента удобно использовать формулы, выражающие их через натуральный логарифм:
{\displaystyle {\begin{aligned}\arcsin z&{}=-i\ln(iz+{\sqrt {1-z^{2}}})={\frac {\pi }{2}}-i\ln(z+{\sqrt {z^{2}-1}}),\end{aligned}}}
{\displaystyle {\begin{aligned}\arccos z&{}={\dfrac {\pi }{2}}+i\ln(iz+{\sqrt {1-z^{2}}}),\end{aligned}}}
{\displaystyle {\begin{aligned}\operatorname {arctg} \,z&{}={\dfrac {i}{2}}(\ln(1-iz)-\ln(1+iz)),\end{aligned}}}
{\displaystyle {\begin{aligned}\operatorname {arcctg} \,z&{}={\dfrac {i}{2}}\left(\ln \left({\dfrac {z-i}{z}}\right)-\ln \left({\dfrac {z+i}{z}}\right)\right),\end{aligned}}}
{\displaystyle {\begin{aligned}\operatorname {arcsec} z&{}=\arccos \left(z^{-1}\right)={\dfrac {\pi }{2}}+i\ln \left({\sqrt {1-{\dfrac {1}{z^{2}}}}}+{\dfrac {i}{z}}\right),\end{aligned}}}
{\displaystyle {\begin{aligned}\operatorname {arccosec} \,z&{}=\arcsin \left(z^{-1}\right)=-i\ln \left({\sqrt {1-{\dfrac {1}{z^{2}}}}}+{\dfrac {i}{z}}\right).\end{aligned}}}

См. также[править | править код]


  • Обратные гиперболические функции

  • Теорема Данжуа — Лузина

Примечания[править | править код]


    1. ↑ Александрова Н. В. История математических терминов, понятий, обозначений: Словарь-справочник, изд. 3-е. — СПб.: ЛКИ, 2008. — С. 211. — ISBN 978-5-382-00839-4.

    2. ↑ Здесь знак −1 определяет функцию x = f−1 (y), обратную функции y = f (x)

    3. ↑ Энциклопедический словарь, 1985, с. 220.

    4. ↑ При значении x, близком к 1, эта расчётная формула даёт большую погрешность. Поэтому можно воспользоваться формулой {\displaystyle \arcsin x=\arccos {\sqrt {1-x^{2}}},} где {\displaystyle \arccos x={\pi \over 2}-\arcsin x}

Download 108,88 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish