Mundarija: Kirish I. Bob. Aniq integrallarning xossalari va ularning geometrik tadbiqlari


Aniq integralni hisoblash uchun namunalar



Download 483,61 Kb.
bet3/8
Sana22.07.2022
Hajmi483,61 Kb.
#838612
1   2   3   4   5   6   7   8
Bog'liq
Aniq integrallar

Aniq integralni hisoblash uchun namunalar
1. integral hisoblansin:
Yechish:
integral hisoblansin.
Yechish:
3. ni hisoblang.
Yechish:


4. integral hisoblansin:
Yechish: Endi yangi chegaralarni aniqlaymiz: da dan da dan kelib chiqadi.
Topilganlarni berilgan integralga qo’yamiz:

.
integral hisoblansin:
: almashtirish qilamiz: U holda bo’ladi. Bundan tashqari yangi o’zgaruvchi ning qiymatlarini aniqlaymiz. da va da Ularni e’tiborga olsak,

6. integral hisoblansin.
Yechish: almashtirish qilamiz. U holda
bo’lganda bo’lib, undan kelib chiqadi. bo’lganda bo’lib, undan kelib chiqadi. Demak,


7. integral hisoblansin.
Yechish: Bu integralni bo’laklab integrallash formulasidan foydalanib integrallaymiz.
8. integral hisoblansin.
Yechish:
1.2.Aniq integralning geometriyaga tadbiqi
1. Figuralar yuzalarini Dekart koordinatalar sistemasida hisoblash.
a) Avvalgi o’tilgan mavzulardan ma’lumki, agar [a,b] kesmada funksiya bo’lsa u holda egri chiziq, OX o’qi va x=a hamda x=b to’gri chiziqlar bilan chegaralangan egri chiziqli trapetsiyaning yuzi
(4)
ga teng bo’ladi. Agar [a,b] kesmada bo’lsa, u holda aniq integral bo’ladi.
Absolyut qiymatiga ko’ra bu integralning qiymati ham tegishli egri chiziqli trapetsiyaning yuziga teng: (4)

y


y=f(x)

0 a b x
1-rasm


Agar funksiya [a,b] kesmada ishorasini chekli son marta o’zgartirsa, u holda integralni butun [a,b] kesmada qismiy kesmada qismiy kesmachalar bo’yicha integrallar yig’indisiga ajratamiz.
bo’lgan kesmalarda integral musbat, bo’lgan kesmalarda integral manfiy bo’ladi. Butun kesma bo’yicha olingan integral OX o’qidan yuqorida va pastda yotuvchi yuzlarning tegishli algebraic yig’indisini beradi (1-rasm). Yuzlar yig’indisini odatdagi ma’noda hosil qilish uchun yuqorida ko’rsatilgan kesmalar bo’yicha olingan integrallar absolyut qiymatlari yig’indisini topish yoki
(4)
Integralni hisoblash kerak.
b) Agar egri chiziqlar hamda x=a va x=b to’g’ri chiziqlar bilan chegaralangan figuraning yuzini hisoblash kerak bo’lsa, u holda shart bajarilgan figuraning yuzi qo’yidagiga teng:
(5)
1-misol. Y=cosx, y=0 chiziqlar bilan chegaralangan figuraning yuzi hisoblansin, bunda (2-rasm)


y
S1 S3


0 S2 x


-1
2-rasm


Yechish.
da hamda da bo’lgani uchun


Demak. S=4(kv.birlik)
2-misol. y=x2+1 va y=3-x chiziqlar bilan chegaralangan figuraning yuzini hisoblang.
Yechish. Figurani yasash uchun avval ishbu sistemani yechib, chiziqlarnin kesishish nuqtalarini topamiz.
(3-rasm).
y
A

B


-2 0 1 2 x


3-rasm



Bu chiziqlar A(-2; 5) va B(1; 2) nuqtalarda keshishadi. U holda


g) Agar egri chiziqli trapetsiyaning yuzi tenglamalari parametric shaklda berilgan chiziq bilan chegaralangan bo’lsa, bunda bu tenglamalar [a, b] kesmadagi biror funksiyani aniqlaydi, bunda
U holda egri chiziqli trapetsiyaning yuzi formula bo’yicha hisoblanishi mumkin bo’ladi. Bu integralda o’zgaruvchini almashtiramiz:

Demak,
(6)
Bu formula chiziq parametric tenglamalar bilan berilganda egri chiziqli trapetsiyaning yuzini hisoblash formulasidir.
3-misol. x=accost, y=bsint ellips bilan chegaralangan sohaning yuzi hisoblansi.
Yechish. Ellipsning yuqori yarim yuzini hisoblab, uni 2 ga ko’paytiramiz.




Download 483,61 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish