u (x)
|
3
|
ex
|
1
|
xe
|
1
|
|
1
|
b
|
tu(t) dt.
|
2
|
2
|
2
|
2
|
|
|
|
|
a
|
|
|
|
|
|
|
|
|
|
|
(1.1.3) ga asosan:
u
|
|
(x) f (x)
|
3
|
e x
|
|
1
|
xe x
|
1
|
;
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
2
|
|
2
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
1
|
|
3
|
|
t
|
|
1
|
|
|
t
|
|
1
|
|
u1 (x) tu0 (t)st t
|
|
|
e
|
|
|
|
|
te
|
|
|
|
dt.
|
2
|
|
2
|
|
2
|
|
|
0
|
0
|
|
|
|
|
|
|
|
|
|
qavslarni ochib so’ngra integrallarni hisoblasak
|
|
1
|
9
|
|
u1
|
(x)
|
|
|
|
e
|
2
|
|
|
|
2
|
|
kelib chiqadi. Bunga muvofiq
u2 ( x) 1 tu1 ( t)
0
1
u3 ( x) 1 tu2 ( t)
0
|
1
|
|
|
|
9
|
1
|
1
|
9
|
|
dt
|
|
|
|
2
|
|
|
|
e tdt
|
|
|
|
e;
|
|
|
|
|
22
|
|
|
2
|
|
|
|
2
|
0
|
2
|
|
dt
|
1
|
9
|
e;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
va hokazo.Bularni qatorga qo’yib soddalashtirilsa
u (x)
|
1
|
(3 x) e x
|
1
|
2
|
3(3 e)
|
|
|
yechim hosil bo’ladi.
12
Integral tenglama rezolventasi
Fredgolmning ikkinchi tur tenglamasini qaraymiz
|
u (x) f (x) b K (x, t) u(t) dt
|
|
|
(1.1.8)
|
|
|
|
a
|
|
|
|
|
Bu tenglamadagi
|
f (x)
|
|
funksiyani
|
|
I kesmada aynan nolga teng emas,
|
uzluksiz va shuningdek, K (x,t) yadroni ham R sohada aynan nolga teng emas va
|
uzluksiz deb faraz qilamiz.
|
|
|
|
|
|
|
(1.1.8) tenglamaning yechimi absolyut va tekis yaqinlashuvchi
|
|
u(x) u
|
0
|
(x) u (x) 2u
|
2
|
(x) ...nu
|
n
|
(x) ...
|
|
|
1
|
|
|
Qator ko’rinishida yoziladi,
|
bundagi ui (x) lar
|
|
|
|
|
|
u0 (x) f (x),
|
|
|
|
|
|
u1 (x) b K (x,t)uo (t) dt,
|
|
|
|
|
|
a
|
|
|
|
|
|
|
|
u2 (x) b K (x,t)u1 (t) dt,
|
|
|
|
|
|
a
|
|
|
|
|
|
............
|
|
formulalardan topiladi. Ifodalarni qulaylik uchun quyidagi shaklda yozib olaylik:
u0 (x) f (x),
u1 (x) b K (x,t) f (t)dt,
a
u2 (x) b K (x, s)u1 (s) ds,
a
Bundagi u1 (s) o’rniga o’zidan oldingi formuladagi ifodasini qo’yamiz
u2 (x) b K (x, s)ds b
|
K (s,t) f (t) dt b
|
f (t) dt b K (x, s) K (s,t)ds,
|
a
|
a
|
a
|
a
|
Endi K2 (x,t) b K (x, s) K (s,t) ds deb belgilasak, yuqoridagi u2 (x) ushbu
a
13
u2 (x) b K2 (x,t) f (t)dt
a
ko’rinishda yoziladi. Xuddi shu usul bilan u3 (x) ni topamiz
u3 (x) b K (x, d )u2 (s)ds,
a
Bundagi u2 (s) o’rniga hozirgina aniqlangan ifodani qo’yamiz :
u3 (x) b K (x, s) ds b K2 (s t) f (t) dt
a a
b f (t)dt b K (x, s)K2 (s,t)ds.
a a
Agar bu yerda
K3 (x,t) b k (x, d ) K2 (s,t) ds
a
deb belgilasak
u3 (x) b K3 (x,t) f (t)dt
a
bo’ladi. Shu usulda davom etaversak,
|
|
|
un (x) b
|
Kn (x,t) f (t) dt, n 1,2,3,...
|
|
|
|
|
a
|
|
|
|
|
|
kelib chiqadi. Simmetriya ushun
|
K1 (x,t) K(x,t)
|
deb belgilaylik.
|
Natijada quyidagi funksiyalar ketma-ketligi hosil bo’ladi :
|
|
|
K1 (x,t),
|
K2 (x,t),
|
K3 (x,t),...
|
Kn (x,t),...
|
(1.1.9)
|
Bular
|
K yadroning
|
iteratsiyalari
|
yoki
|
iteratsiyalangan
|
yadrolar, ya’ni
|
takrorlangan yadrolar deb ataladi. Endi u0 ,
|
u1 ,
|
u2,... larning yuqorida aniqlangan
|
ifodalarni (2) yechimga qo’yib ixchamlansa, quyidagi natija kelib chiqadi:
14
u(x) f (x) b[K1 (x,t) K2 (x,t) 2 K3 (x,t) ...
a
n1 K n (x,t) ...]f (t), ...
(x,t;) K1 (x,t) K2 (x,t) 2 K3 (x,t) ...
n1 Kn (x,t) ...
|
(1.1.10)
|
deb belgilab olsak, quyidagi yechim hosil bo’ladi:
u (x) f (x) b Г (x,t,) f (t) dt.
|
(1.1.11)
|
a
|
|
Bundagi Г (x,t;) berilgan (1.1.8) Fredgolm tenglamasini rezolventasi ya’ni hal qiluvchi yadrosi deyiladi.
Demak (1.1.12) yechim mavjud bo’lishi ushun integral ishorasi ostidagi
(x,t;) rezolventa uzluksiz bo’lishi kerak. Buning uchun esa (1.1.11) funksional qator R sohada absolyut va tekis yaqinlashuvchi bo’lishi kerak.
Isbot: Yuqoridagi (1.1.11) qatorning absolyut va tekis yaqinlashuvchi ekanini isbot qilish uchun har bir hadining absolyut qiymati biror musbat hadli yaqinlashuvchi qatorning mos hadlardan katta emasligini ko’rsatish kifoya.
Ikki argumentli K (x,t) funksiya yopiq R sohada uzluksiz deb faraz qilingani uchun chegaralangan bo’ladi, ya’ni
Shunga binoan (1.1.11) ning hadlari
K2 ( x, t)
2 K3 (x,t) 2
b K (x, s) K (x,t) ds
a
b K (x, s) K2 (s,t)ds
ab
( x, t; )
( x, t; )
n1Kn (x,t)
n1 M n (b a)n1 ,...
O’ng tomondagi hadlardan quyudagi qatorni tuzaylik:
M [ M (b _ a)]M[
Ma’lumki agar
M (b a)]2 ... .
|
(1.1.12)
|
bo’lsa, (1.1.13) qator yaqinlashuvchi bo’ladi. U holda yuqoridagi tengsizliklarga asosan (1.1.11) qator R sohada absolyut va tekis yaqinlashuvchi bo’ladi. Demak,
u qatorning yig’indisi G uzluksiz funksiya bo’ladi.
Misollar ishlashda, dastlab, (1.1.14) tengsizlikning bajarilishini tekshirib ko’rish kerak. Agar u bajarilsa, Kn (x,t) interatsiyalarning ifodalarini topish va ularni
(1.1.11) qatorga qo’yib, G rezolventani aniqlash kerak. Nihoyat, uni
(1.1.12) tenglikka qo’yib, (1.1.8) tenglamaning yeshimini topish mumkin.
Misol: Ushbu tenglama rezolventa yordami bilan yechilsin:
u(x)
|
5
|
x
|
1
|
1
|
xt u (t)dt.
|
6
|
2
|
|
|
0
|
|
|
|
|
|
|
Bu misolda
x 1),
|
R(0 x 1,
|
0 t 1),
|
|
1;
|
M 1; b a 1 0 1.
|
|
|
|
|
|
Demak, (1.1.14) shart bajariladi, endi iterasiyalarni izlaymiz:
K1 ( x, t) K ( x, t) xt; K2 ( x, t) 1 K (x, s)K (s,t)ds
0
1
|
xs st dt xt 1
|
s 2 ds
|
1
|
xt;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
3
|
|
|
3
|
|
|
1
|
|
|
|
|
3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K3 (x,t)
|
|
K (x, s)K2 (s,t)d s
|
1
|
|
xs.st ds
|
1
|
xt
|
|
|
s 2 ds
|
1
|
xt;
|
|
|
o
|
|
|
0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
K4
|
(x,t)
|
1
|
K (x, s) K3 (s,t) ds
|
1
|
1
|
xs st ds
|
|
1
|
|
xt
|
1
|
s 2 ds
|
1
|
xt;
|
|
3
|
2
|
|
|
3
|
2
|
|
|
3
|
2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
16
va hokazo, umumiy qonuniyat ko’rinib qilgani ushun hisoblashni davom ettirmadik. Bularning hammasini (1.1.11) qatorga qo’yib, 12 ekanini nazarda
tutsak,
Г
|
x,t;
|
1
|
xt
|
1
|
1
|
|
1
|
...
|
xt
|
|
1
|
|
|
|
6
|
xt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6
|
|
62
|
|
|
|
|
1
|
5
|
|
|
|
2
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
bo’ladi.
Demak, berilgan integral tenglamaning rezolventasi
|
1
|
|
|
6
|
|
Г x,t;
|
|
|
|
xt.
|
|
|
|
2
|
|
|
5
|
|
Endi buni (1.1.12) formulaga qo’yib, izlanayotgan yechimni topamiz:
u(x)
|
5
|
x
|
1
|
1
|
6
|
x t
|
5
|
tdt
|
5
|
x
|
1
|
x1
|
t 2 dt
|
6
|
2
|
5
|
6
|
6
|
2
|
|
|
0
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 x 16 x x, ya’ni u(x) x.
Do'stlaringiz bilan baham: |