Mirzo ulug’bek nomidagi o’zbekiston milliy universiteti jizzax filiali amaliy matematika fakulteti tabiiy va iqtisodiyot fanlar kafedrasi iqtisod yo’nalishi 928-21-guruh talabasi yaxshibayev abdulazizning oliy matematika (MA’ruza)



Download 0,56 Mb.
bet4/8
Sana22.06.2022
Hajmi0,56 Mb.
#691809
TuriReferat
1   2   3   4   5   6   7   8
Bog'liq
MARDIYEVA MUXLISA. MATEM

1-misol. bo’lsa, e sonni z darajaga ko’taring.
Yechilishi: e sonni z darajaga ko’tarish uchun va (2) formuladan foydalanamiz. Berilganga ko’ra x=1, y=1. U holda,
.
2-misol. e sonni darajaga ko’taring.
Yechilishi: (1) yoki (2) formulalardan birini qo’llaymiz:
.
4-misol. sonni ko’rsatkichli ko’rinishda ifodalang.
Yechilishi: U holda, .
5-misol. sonni algebraik ko’rinishda ifodalang.

Yechilishi:
.
6-misol. kompleks sonni ko’rsatkichli ko’rinishda ifodalang.
Yechilishi: Berilgan kompleks sonni ko’rsatkichli ko’rinishga keltirish uchun

formuladan ifodalaymiz:

7-misol. va kompleks sonlar berilgan. va larni toping. Natijalarni trigonometrik shaklda ifodalang.
Yechilishi: (7) va (8) formulalarni qo’llaymiz:

.
Endi nisbatni topamiz va natijani trigonometrik shaklda ifodalaymiz:
.


Kompleks tekislikda chiziqlar.
Egri chiziqni tekislikda nuqtaning uzluksiz harakati natijasida qoldirgan izi deb qarash mumkin. Harakatdagi nuqtaning koordinatalarini x va y deyilsa, ravshanki ular biror t o’zgaruvchining uzluksiz funksiyalari bo’ladi:

Ayni paytda (x,y) juftlik kompleks sonni ifodalagani sababli, uni z=x + iy ko’rinishda yozish mumkin. Natijada, z = x + iy = x(t) + iy(t) = z(t)
bo’ladi.
Demak,
z = z (t) (   t   )
funksiya [,] segmentni kompleks tekislik nuqtalariga akslantiradi va bu nuqtalar to’plami esa kompleks tekislikda egri chiziqni ifodalar ekan. Bunda z0=z( ) egri chiziqning boshlang’ich nuqtasi , z1=z ( ) esa egri chiziqning oxirgi nuqtasi bo’ladi.
Agar bo’lsa, bunday egri chiziq yopiq deyiladi.
Agar z=z(t) egri chiziqda t o’zgaruvchining ikkita turli t1 va t2 ( ) qiymatlariga mos keladigan z (t1) va z (t2) nuqtalar ham turlicha bo’lsa, u holda egri chiziq Jordan chizig’i deyiladi .
Agar x(t) va y(t) funksiyalar [a,b] cegmentda uzluksiz differentsiallanuvchi bo’lib, z'(t) = x'(t) + iy'(t)  0 shartni qanoatlantirsa, z(t) = x(t) + iy(t) egri chiziq silliq egri chiziq deyiladi.
Kompleks tekislikda ochiq va yopiq to’plamlar. Sohalar.
Biror z0C nuqta va ­  > 0 son berilgan bo’lsin.

Download 0,56 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish