MINISTRY OF HIGHER AND SPECIALISED SECONDARY EDUCATION OF
UZBEKISTAN
FERGHANA STATE UNIVERSITE
Faculty: Natural subjects
Chair: The methods of teaching chemistry
Subject: English
INDEPENDENT WORK
Theme: Influence of catalyst
Student: Abdumamatov A.A
Teacher: Ergasheva N. K.
Influence of catalyst
Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which is not consumed in the catalyzed reaction and can continue to act repeatedly. Because of this, only very small amounts of catalyst are required to alter the reaction rate in principle.
In general, chemical reactions occur faster in the presence of a catalyst because the catalyst provides an alternative reaction pathway with a lower activation energy than the non-catalyzed mechanism. In catalyzed mechanisms, the catalyst usually reacts to form a temporary intermediate, which then regenerates the original catalyst in a cyclic process. A substance which provides a mechanism with a higher activation energy does not decrease the rate because the reaction can still occur by the non-catalyzed route. An added substance which does reduce the reaction rate is not considered a catalyst but a reaction inhibitor (see below).
Catalysts may be classified as either homogeneous or heterogeneous. A homogeneous catalyst is one whose molecules are dispersed in the same phase (usually gaseous or liquid) as the reactant's molecules. A heterogeneous catalyst is one whose molecules are not in the same phase as the reactant's, which are typically gases or liquids that are adsorbed onto the surface of the solid catalyst. Enzymes and other biocatalysts are often considered as a third category.
Technical perspective
In the presence of a catalyst, less free energy is required to reach the transition state, but the total free energy from reactants to products does not change.[1] A catalyst may participate in multiple chemical transformations. The effect of a catalyst may vary due to the presence of other substances known as inhibitors or poisons (which reduce the catalytic activity) or promoters (which increase the activity and also affect the temperature of the reaction).
Catalyzed reactions have a lower activation energy (rate-limiting free energy of activation) than the corresponding uncatalyzed reaction, resulting in a higher reaction rate at the same temperature and for the same reactant concentrations. However, the detailed mechanics of catalysis is complex. Catalysts may bind to the reagents to polarize bonds, e.g. acid catalysts for reactions of carbonyl compounds, or form specific intermediates that are not produced naturally, such as osmate esters in osmium tetroxide-catalyzed dihydroxylation of alkenes, or cause dissociation of reagents to reactive forms, such as chemisorbed hydrogen in catalytic hydrogenation.
Kinetically, catalytic reactions are typical chemical reactions; i.e. the reaction rate depends on the frequency of contact of the reactants in the rate-determining step. Usually, the catalyst participates in this slowest step, and rates are limited by amount of catalyst and its "activity". In heterogeneous catalysis, the diffusion of reagents to the surface and diffusion of products from the surface can be rate determining. A nanomaterial-based catalyst is an example of a heterogeneous catalyst. Analogous events associated with substrate binding and product dissociation apply to homogeneous catalysts.
Although catalysts are not consumed by the reaction itself, they may be inhibited, deactivated, or destroyed by secondary processes. In heterogeneous catalysis, typical secondary processes include coking where the catalyst becomes covered by polymeric side products. Additionally, heterogeneous catalysts can dissolve into the solution in a solid–liquid system or sublimate in a solid–gas system.
Do'stlaringiz bilan baham: |