Teorema (Koshi masalasi yechimining mavjudligi va yagonaligi haqidagi teorema).
Agar ( , ) 0 0 0 P x y nuqtani o‘z ichiga olgan D sohada f (x, y) funksiya v xususiy
hosila uzluksiz bo‘lsa, u holda y f (x, y)
differensial tenglamaning 0 0 y y x x shartni qanoatlantiruvchi y (x)
yechimi mavjud va yagona bo‘ladi.
Teoremaning shartlari buziladigan nuqtalar maxsus nuqtalar deyiladi.
Maxsus nuqtalar orqali yoki birorta ham integral egri chiziq o‘tmaydi yoki
bir nechta integral egri chiziq o‘tadi.
Umumiy yechimi chekli sondagi elementar almashtirishlar va
kvadraturalar (elementar funksiyalarni integrallashlar) natijasida topiladigan
birinchi tartibli differensial tenglamaga kvadraturada integrllanuvchi
differensial tenglama deyiladi. Fan va texnikaning koʻplab masalalari oddiy differensial tenglamalarni yechishga olib kelinadi. Oddiy differensial tenglama deb erkli oʻzgaruvchi (argument), izlanayotgan funksiya va uning bir qator hosilalarini oʻz ichiga olgan tenglamaga aytiladi. Oddiy differensial tenglama umumiy holda quyidagicha yoziladi: , …, y, yF(x, y, y (n) ) = 0, bu yerda x – erkli oʻzgaruvchi; y (i) – izlanayotgan funksiyaning i-tartibli hosilasi, y (i) = i i dx d y ( ) ; n – tenglamaning tartibi. n-tartibli oddiy differensial tenglamaning umumiy yechimi n ta c1, c2, .., cn oʻzgarmaslarni oʻz ichiga oladi, yaʼni uning umumiy yechimi quyidagicha yoziladi: (x, c1, c2, .., cn).y = Oddiy differensial tenglamaning yagona yechimini topish uchun n ta qoʻshimcha shartlar kiritish lozim boʻladi. Agar bu qoʻshimcha shartlr bitta nuqtada berilsa, u holda bunday masala Koshi masalasi deb ataladi. Koshi masalasining qoʻshimcha shartlari boshlangʻich shartlar deb ataladi. Agar qoʻshimcha shartlar bittadan ortiq nuqtalarda berilsa, yaʼni erkli oʻzgaruvchining har xil qiymatlarida berilsa, u holda bunday masala chegaraviy masala deb ataladi. Bunday masalaning qoʻshimcha shartlari chegaraviy shartlar deb ataladi. Xususan, n = 1 boʻlganda gap faqat Koshi masalasi haqida ketadi. Koshi masalasining qoʻyilishiga misollar keltiraylik: = x1) y 3 y 2 , y(1) = 2; + xy3 = y2) y (1) = 0., y(1) = 1 , y Chegaraviy masalasining qoʻyilishiga misollar keltiraylik: – xy , y(0) = 1 , y(1) = 0; + 2y1) y (1) = 0 , y(3) = 2 . , y(1) = 0 , y – y = x + xy2) y Bunday masalalarni analitik usullar bilan faqatgina maxsus turdagi tenglamalar uchungina yechish mumkin. Qolgan hollarda biror sonli usulga murojaat qilishga toʻgʻri keladi. Quyida ana shunday bir qadamli sonli usullar bilan birinchi tartibli oddiy differensial tenglamalarni yechishni qarab chiqamiz.
Do'stlaringiz bilan baham: |