Фрактальный подход к описанию текстур
Описание широкого класса процессов и явлений, таких как процессы ограниченной диффузной агрегации, образование вязких пальцев в пористых средах, турбулентность, процессы диффузии, называемые протеканием, или перколяционными процессами, а также описание объектов природы, таких как облака, земная поверхность и многие другие, в терминах фрактальной геометрии определило новое направление в исследованиях - анализ фракталов. При таком подходе авторы не называют объект текстурой, а называют его фракталом. Поскольку анализ фракталов, по существу, дает характеристику текстуры, и на сегодняшний день нет устоявшегося определения ни текстуры, ни фрактала, то представляется возможным говорить о фрактальных свойствах текстур. Бенуа Б. Мандельброт в книге [89], первый назвавший объекты фракталами, изложил как элементарные понятия фрактальной геометрии, так и новые идеи в этой области, издав общепризнанный стандартный справочник по фракталам. В евклидовой геометрии введено понятие топологической размерности. Так, размерность кривой - 1, размерность плоскости - 2, поверхности - 3. Таким образом, топологическая размерность имеет целочисленное значение. Во фрактальной геометрии размерность кривой может иметь значение в интервале [1,2] в зависимости от сложности кривой, размерность поверхности заключена в интервале [2,3]. Концепция дробной размерности была впервые сформулирована математиками Хаусдорфом и Безиковичем. Мандельброт назвал такую размерность фрактальной и ввел такое определение фрактала [89]: “Фракталом называется множество, размерность Хаусдорфа-Безиковича которого строго больше его топологической размерности”.
Распространение фрактального описания объясняется тем, что большинство пространственных систем в природе является нерегулярным
и фрагментарным, форма этих систем плохо поддается описанию аппаратом евклидовой геометрии. Например, береговая линия острова не прямая и не круглая, и никакая другая классическая кривая не может служить для описания и объяснения ее формы без чрезмерной искусственности и усложнения.
Определение фрактала претерпевает изменения. В 1987 году в частном сообщении [63] Мандельброт сузил свое определение: “Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому”.
Существенным отличительным признаком второго определения является то, что при определении фрактала используется свойство самоподобия фрактала. Многие кривые и поверхности статистически самоподобны, то есть каждая часть может считаться изображением целого в уменьшенном виде.
Размерность фрактала D определяется как
D logN log1/ r
, (9.1)
где 1/r есть отношение подобия, N - число шагов, необходимое для того, чтобы покрыть кривую.
На рисунке 9.1 проиллюстрировано соотношение между числом шагов и отношением подобия на примере четырех ломаных прямых.
N=4, r=1/4
D=log4/log4=1
N=5, r=1/4
D=log5/log4=1.16
N=8, r=1/4
D=log8/log4=1.5
N=6, r=1/4
D=log6/log4=1.28
Рисунок 9.1 Определение размера фрактала на примере четырех ломаных линий.
Практически размер фрактала для кривой оценивается путем измерения длин кривой при различных размерах шага. Размерность фрактала D может быть оценена с помощью следующего уравнения регрессии:
logL=C+BlogG, (9.2)
D=1-B, (9.3)
где L − длина кривой, B − наклон регрессии, G − величина шага,
С − константа.
Рассмотрим подробнее реализацию фрактального подхода к анализу облаков. В основу этого метода положено выведенное Мандельбротом соотношение между периметром и площадью объекта [90]. Для окружностей, квадратов, равносторонних треугольников и других многоугольников отношение периметра к квадратному корню из ограничиваемой ими площади не зависит от размера фигуры и является величиной постоянной для данного семейства. Аналогично для семейства подобных островов отношение длины нефрактальной береговой линии любого острова к квадратному корню из его площади не зависит от размера площади. Однако, если береговая линия фрактальна, то ее длина
L() зависит от длины эталона и стремится к бесконечности при
стремлении эталона к нулю.
При этом площадь острова
A() , определяемая количеством
располагаемых на ней квадратов
2 , остается конечной. Таким образом,
отношение периметра к квадратному корню из площади расходится. Мандельброт получил для случая фрактальной береговой линии следующее соотношение между периметром и площадью:
L C (1 D ) AD / 2 . (9.4)
Это соотношение выполняется для любого эталона длины , достаточно малого, чтобы удовлетворительно обмерять самый малый из островов.
Соотношение (9.4) применимо при исследовании геометрии облаков и зон дождя, размеры которых заключены в широких пределах от 1 до 1,2106 км2. Выяснилось, что периметр облака связан с его площадью соотношением (9.4) с фрактальным размером D = 1,35 0,05 [90]. При этом эти оценки оказались справедливы как для кучевых, так и для перистых облаков. В работе Ф. Риса и А. Вальдфогеля [91], посвященной анализу фрактальной размерности облаков с мощными конвективными токами, было установлено соотношение между периметром и площадью для последовательности моментов времени (с интервалом в 1 минуту) в плоскости сечения для постоянного коэффициента отражения. Основные выводы могут быть следующими: для облаков, периметр которых больше
8 км, размер фрактала примерно совпадает с размером менее мощных облаков и составляет 1,36 0,1; для облаков периметра от 3 км до 8 км
D=1,0 0,1 и, наконец, облака с периметром менее 3 км не являются фракталами.
Исследования фрактальных поверхностей от молекулярных поверхностей белков, обшивки супертанкеров, поверхностей суставов до взлетных полос аэродромов проводились различными авторами. При этом использовались различные методы оценки размера фрактала, основные из которых более подробно будут рассмотрены в разделе 9.6.
Таким образом, важной задачей анализа текстур является выделение признаков. Можно отметить три основных подхода к описанию текстур, на основании которых формируются признаки текстур. Перспективным представляется использование набора признаков, комбинируемых из признаков, выделяемых при различных подходах к описанию текстур.
Do'stlaringiz bilan baham: |