extremely consistent, involving only several types of neurons. There appears to be a specific type of computation that
it accomplishes.
78
Despite the uniformity of the cerebellum's information processing, the broad range of its functions can be
understood in terms of the variety of inputs it receives from the cerebral cortex (via the brain-stem nuclei and then
through the cerebellum's mossy fiber cells) and from other regions (particularly the "inferior olive" region of the brain
via the cerebellum's climbing fiber cells). The cerebellum is responsible for our understanding of the timing and
sequencing of sensory inputs as well as controlling our physical movements .
The cerebellum is also an example of how the brain's considerable capacity greatly exceeds its compact genome.
Most of the genome that is devoted to the brain describes the detailed structure of each type of neural cell (including
its dendrites, spines, and synapses) and how these structures respond to stimulation and change. Relatively little
genomic code is responsible for the actual "wiring." In
the cerebellum, the basic wiring method is repeated billions of
times. It is clear that the genome does not provide specific information about each repetition of this cerebellar structure
but rather specifies certain constraints as to how this structure is repeated (just as the genome does not specify the
exact location of cells in other organs).
specify the movements of each of these muscles but are coded in a more compact, as yet poorly understood, fashion.
The final signals to the muscles are determined at lower
levels of the nervous system, specifically in the brain stem and
spinal cord.
79
Interestingly, this organization is taken to an extreme in the octopus, the central nervous system of which
apparently sends very high-level commands to each of its arms (such as "grasp that object and bring it closer"), leaving
it up to an independent peripheral nervous system in each arm to carry out the mission.
80
A great deal has been learned in recent years about the role of the cerebellum's three principal nerve types.
Neurons called "climbing fibers" appear to provide signals to train the cerebellum. Most of the output of the
cerebellum comes from the large Purkinje cells (named for Johannes Purkinje, who identified the cell in 1837), each of
which receives about two hundred thousand inputs (synapses), compared to the average of about one thousand for a
typical neuron. The inputs come largely from the
granule cells, which are the smallest neurons, packed about six
million per square millimeter. Studies of the role of the cerebellum during the learning of handwriting movements by
children show that the Purkinje cells actually sample the sequence of movements, with each one sensitive to a specific
sample.
81
Obviously, the cerebellum requires continual perceptual guidance from the visual cortex. The researchers
were able to link the structure of cerebellum cells to the observation that there is an inverse relationship between
curvature and speed when doing handwriting that is, you can write faster by drawing straight lines instead of detailed
curves for each letter.
Detailed cell studies and animal studies have provided us with impressive mathematical descriptions of the
physiology and organization of the synapses of the cerebellurn,
82
as well as of the coding of
information in its inputs
and outputs, and of the transformations perforrned.
83
Gathering data from multiple studies, Javier F. Medina, Michael
D. Mauk, and their colleagues at the University of Texas Medical School devised a detailed bottom-up simulation of
the cerebellum. It features more than ten thousand simulated neurons and three hundred thousand synapses, and it
includes all of the principal types of cerebellum cells.
84
The connections of the cells and synapses are determined by a
computer, which "wires" the simulated cerebellar region by following constraints and rules, similar to the stochastic
(random within restrictions) method used to wire the actual human brain from its genetic code.
85
It would not be
difficult to expand the University of Texas cerebellar simulation to a larger number of synapses and cells.
The Texas researchers applied a classical learning experiment to their simulation and
compared the results to
many similar experiments on actual human conditioning. In the human studies, the task involved associating an
auditory tone with a puff of air applied to the eyelid, which causes the eyelid to close. If the puff of air and the tone are
presented together for one hundred to two hundred trials, the subject will learn the association and close the subject's
eye upon merely hearing the tone. If the tone is then presented many times without the air puff, the subject ultimately
learns to disassociate the two stimuli (to "extinguish" the response), so the learning is bidirectional. After tuning a
variety of parameters, the simulation provided a reasonable match to experimental results on human and animal
cerebellar conditioning. Interestingly, the researchers found that if they created simulated cerebellar lesions (by
removing portions of the simulated cerebellar network), they got results similar to those
obtained in experiments on
rabbits that had received actual cerebellar lesions.
86
On account of the uniformity of this large region of the brain and the relative simplicity of its interneuronal
wiring, its input-output transformations are relatively well understood, compared to those of other brain regions.
Although the relevant equations still require refinement, this bottom-up simulation has proved quite impressive.
Do'stlaringiz bilan baham: