In one experiment conducted by Michael Merzenich and his colleagues at the University of California at San
Francisco, monkeys' food was placed in such a position that the animals had to dexterously manipulate one
finger to
obtain it. Brain scans before and after revealed dramatic growth in the interneuronal connections and synapses in the
region of the brain responsible for controlling that finger.
Edward Taub at the University of Alabama studied the region of the cortex responsible for evaluating the tactile
input from the fingers. Comparing nonmusicians to experienced players of stringed instruments, he found no
difference in the brain regions devoted to the fingers of the right hand but a huge difference for the fingers of the left
hand. If we drew a picture of the hands based on the amount of brain tissue devoted to analyzing touch, the musicians'
fingers on their left hand (which are used to control the strings) would be huge. Although the difference was greater
for those musicians who began musical training with a stringed instrument as children, "even if you take up the violin
at 40," Taub commented, "you still get brain reorganization."
63
A similar finding comes from an evaluation of a software program, developed by Paula
Tallal and Steve Miller at
Rutgers University, called Fast ForWord, that assists dyslexic students. The program reads text to children, slowing
down staccato phonemes such as "b" and "p," based on the observation that many dyslexic students are unable to
perceive these sounds when spoken quickly. Being read to with this modified form of speech has been shown to help
such children learn to read. Using fMRI scanning John Gabrieli of Stanford University found that the left prefrontal
region of the brain, an area associated with language processing, had indeed grown and showed greater activity in
dyslexic students using the program. Says Tallal, "You create your brain from the input you get."
It is not even necessary to express one's thoughts in physical action to provoke the brain to rewire itself. Dr.
Alvaro Pascual-Leone at Harvard University scanned the brains of volunteers before and after they practiced a simple
piano exercise. The brain motor cortex of the volunteers changed as a direct result of their practice. He then had a
second group just think about doing the piano exercise but without actually moving any muscles.
This produced an
equally pronounced change in the motor-cortex network.
64
Recent fMRI studies of learning visual-spatial relationships found that interneuronal connections are able to
change rapidly during the course of a single learning session. Researchers found changes in the connections between
posterior parietal-cortex cells in what is called the "dorsal" pathway (which contains information about location and
spatial properties of visual stimuli) and posterior inferior-temporal cortex cells in the "ventral" pathway (which
contains recognized invariant features of varying levels of abstraction);
65
significantly, that rate of change was directly
proportional to the rate of learning.
66
Researchers at the University of California at San Diego reported a key insight into the difference in the formation
of short-term and long-term memories. Using a high-resolution scanning method, the scientists were able to see
chemical changes within synapses in the hippocampus, the brain region associated with the formation of long-term
memories.
67
They discovered that when a cell was first stimulated, actin, a neurochemical,
moved toward the neurons
to which the synapse was connected. This also stimulated the actin in neighboring cells to move away from the
activated cell. These changes lasted only a few minutes, however. If the stimulations were sufficiently repeated, then a
more significant and permanent change took place.
"The short-term changes are just part of the normal way the nerve cells talk to each other," lead author Michael A.
Colicos said.
The long-term changes in the neurons occur only after the neurons are stimulated four times over the course
of an hour. The synapse will actually split and new synapses will form, producing a permanent change that
will presumably last for the rest of your life. The analogy to human memory is that when you see or hear
something once, it might stick in your mind for a few minutes. If it's not important,
it fades away and you
forget it 10 minutes later. But if you see or hear it again and this keeps happening over the next hour, you are
going to remember it for a much longer time. And things that are repeated many times can be remembered for
an entire lifetime. Once you take an axon and form two new connections, those connections are very stable
and there's no reason to believe that they'll go away. That’s the kind of change one would envision lasting a
whole lifetime.
"It's like a piano lesson," says coauthor and professor of biology Yukiko Goda. "If you playa musical score over
and over again, it becomes ingrained in your memory." Similarly, in an article in Science neuroscientists S. Lowel and
W. Singer report having found evidence for rapid dynamic formation of new interneuronal connections
in the visual
cortex, which they described with Donald Hebb's phrase "What fires together wires together."
68
Another insight into memory formation is reported in a study published in Cell. Researchers found that the CPEB
protein actually changes its shape in synapses to record mernories.
69
The surprise was that CPEB performs this
memory function while in a prion state.
"For a while we've known quite a bit about how memory works, but we've had no clear concept of what the key
storage device is," said coauthor and Whitehead Institute for Biomedical Research director Susan Lindquist. "This
study suggests what the storage device might be—but it's such a surprising suggestion to find that a prion-like activity
may be involved....It ... indicates that prions aren't just oddballs of nature but might participate in fundamental
processes." As I reported in chapter 3, human engineers are also finding prions to be a powerful means of building
electronic memories.
Brain-scanning studies are also revealing mechanisms to inhibit unneeded and undesirable memories, a finding
that would gratify Sigmund Freud.
70
Using fMRI, Stanford University scientists asked study subjects to attempt to
forget information that they had earlier memorized.
During this activity, regions in the frontal cortex that have been
associated with memory repression showed a high level of activity, while the hippocampus, the region normally
associated with remembering, was relatively inactive. These findings "confirm the existence of an active forgetting
process and establish a neurobiological model for guiding inquiry into motivated forgetting," wrote Stanford
psychology professor John Gabrieli and his colleagues. Gabrieli also commented, "The big news is that we've shown
how the human brain blocks an unwanted memory, that there is such a mechanism, and it has a biological basis. It gets
you past the possibility that there's nothing in the brain that would suppress a memory—that
it was all a misunderstood
fiction."
In addition to generating new connections between neurons, the brain also makes new neurons from neural stem
cells, which replicate to maintain a reservoir of themselves. In the course of reproducing, some of the neural stem cells
become "neural precursor" cells, which in turn mature into two types of support cells called astrocytes and
oligodendrocytes, as well as neurons. The cells further evolve into specific types of neurons. However, this
differentiation cannot take place unless the neural stem cells move away from their original source in the brain's
ventricles. Only about half of the neural cells successfully make the journey, which is similar to the process during
gestation and early childhood in which only a portion of the early brain's developing neurons survive. Scientists hope
to bypass this neural migration process by injecting neural stem cells directly into target regions, as well as to create
drugs that promote this process of neurogenesis (creating new neurons) to repair brain damage from injury or
disease.
71
An experiment by genetics researchers Fred Gage, G. Kempermann, and Henriette van Praag at
the Salk Institute
for Biological Studies showed that neurogenesis is actually stimulated by our experience. Moving mice from a sterile,
uninteresting cage to a stimulating one approximately doubled the number of dividing cells in their hippocampus
regions.
72
Do'stlaringiz bilan baham: