with by the eleventh century, but the complexity of Asian characters prevented these early attempts from
being fully successful. Johannes Gutenberg working in the fifteenth century, benefited from the relative
simplicity of the Roman character set. He produced his Bible, the first large-scale work printed entirely with
movable type, in 1455.
While there has been a continual stream of evolutionary improvements in the mechanical and
electromechanical
process of printing, the technology of bookmaking did not see another qualitative leap
until the availability of computer typesetting, which did away with movable type about two decades ago.
Typography is now regarded as a part of digital image processing.
With books a fully mature technology, the false pretenders arrived about twenty years ago with the first
wave of "electronic books." As is usually the case, these false pretenders offered dramatic qualitative and
quantitative benefits. CD-ROM- or flash memory-based electronic books can provide the equivalent of
thousands of books with powerful computer-based search and knowledge navigation features. With Web- or
CD-ROM-
and DVD-based encyclopedias, I can perform rapid word searches using extensive logic rules,
something is just not possible with the thirty-three-volume "book" version I possess. Electronic books can
provide pictures that are animated and that respond to our input. Pages are not necessarily ordered
sequentially but can be explored along more intuitive connections.
As with the phonograph record and the piano, this first generation of false pretenders was (and still is)
missing an essential quality of the original, which in this case is the superb visual characteristics of paper
and ink. Paper does not flicker, whereas the typical computer screen is displaying sixty or more fields per
second. This is a problem because of an evolutionary adaptation of the primate visual system. We are able
to see only a very small portion of the visual field with high resolution.
This portion, imaged by the fovea in
the retina, is focused on an area about the size of a single word at twenty-two inches away. Outside of the
fovea, we have very little resolution but exquisite sensitivity to changes in brightness, an ability that allowed
our primate forebears to quickly detect a predator that might be attacking. The constant flicker of a video
graphics array (VGA) computer screen is detected by our eyes as motion and causes constant movement of
the fovea. This substantially slows down reading speeds. which is one reason that reading on a screen is
less pleasant than reading a printed book. This particular issue has been solved with flat-panel displays,
which do not flicker.
Other crucial issues include contrast—a good-quality book has an ink-to-paper contrast of about 120:1;
typical screens are perhaps half of that—and resolution. Print and illustrations in
a book represent a
resolution of about 600 to 1000 dots per inch (dpi), while computer screens are about one tenth of that.
The size and weight of computerized devices are approaching those of books, but the devices are still
heavier than a paperback book. Paper books also do not run out of battery power.
Most important, there is the matter of the available software, by which I mean the enormous installed
base of printed books. Fifty thousand new print books are published each year in the United States, and
millions of books are already in circulation. There are major efforts under way to scan and digitize print
materials, but it will be a long time before the electronic databases have a comparable wealth of material.
The biggest obstacle here is the understandable hesitation of publishers to make the electronic versions of
their books available, given the devastating effect that illegal file sharing has had on the
music-recording
industry.
Solutions are emerging to each of these limitations. New, inexpensive display technologies have
contrast, resolution, lack of flicker, and viewing and comparable to high-quality paper documents. Fuel-cell
power for portable electronics is being introduced, which will keep electronic devices powered for hundreds
of hours between fuel-cartridge changes. Portable electronic devices are already comparable to the size and
weight of a book. The primary issue is going to be finding secure means of making electronic information
available. This is a fundamental concern for every level of our economy. Everything—including
physical
products, once nanotechnology-based manufacturing becomes a reality in about twenty years—is becoming
information.