competing theories for the behavior of matter and energy at these scales is based on mathematical models that are
based on computable transformations. Many of the transformations in physics do provide
the basis for universal
computation (that is, transformations from which we can build general-purpose computers), and it may be that
behavior in the pico- and femtometer range will do so as well.
Of course, even if the basic mechanisms of matter in these ranges provide for universal computation in theory, we
would still have to devise the requisite engineering to create massive numbers of computing elements and learn how to
control them. These are similar to the challenges on which we are now rapidly making progress in the field of
nanotechnology. At this time, we have to regard the feasibility of pico- and femtocomputing as speculative. But
nanocomputing will provide massive levels of intelligence, so if it's at all possible to do, our
future intelligence will be
likely to figure out the necessary processes. The mental experiment we should be making is not whether humans as we
know them today will be capable of engineering pico- and femtocomputing technologies, but whether the vast
intelligence of future nanotechnology-based intelligence (which will be trillions of trillions of times more capable than
contemporary biological human intelligence) will be capable of rendering these designs. Although I believe it is likely
that our future nanotechnology-based intelligence will be able to engineer computation at scales finer than
nanotechnology, the projections in this book concerning the Singularity do not rely on this speculation.
In addition to making computing smaller, we can make it bigger—that is, we can replicate
these very small
devices on a massive scale. With full-scale nanotechnology, computing resources can be made self-replicating and
thus can rapidly convert mass and energy into an intelligent form. However, we run up against the speed of light,
because the matter in the universe is spread out over vast distances.
As we will discuss later, there are at least suggestions that the speed of light may not be immutable. Physicists
Steve Lamoreaux and Justin Torgerson of the Los Alamos National Laboratory have analyzed data from an old natural
nuclear reactor that two billion years ago produced a fission reaction lasting several hundred
thousand years in what is
now West Africa.
75
Examining radioactive isotopes left over from the reactor and comparing them to isotopes from
similar nuclear reactions today, they determined that the physics constant alpha (also called the fine-structure
constant), which determines the strength of the electromagnetic force, apparently has changed over two billion years.
This is of great significance to the world of physics, because the speed of light is inversely proportional to alpha, and
both have been considered unchangeable constants. Alpha appears to have decreased by 4.5 parts out of 10
8
. If
confirmed, this would imply that the speed of light has increased.
Of course, these exploratory results will need to be carefully verified. If true, they may hold great
importance for
the future of our civilization. If the speed of light has increased, it has presumably done so not just as a result of the
passage of time but because certain conditions have changed. If the speed of light has changed due to changing
circumstances, that cracks open the door just enough for the vast powers of our future intelligence and technology to
swing the door widely open. This is the type of scientific insight that technologists can exploit. Human engineering
often takes a natural, frequently subtle, effect, and controls it with a view toward greatly leveraging and magnifying it.
Even if we find it difficult to significantly increase the speed of light over
the long distances of space, doing so
within the small confines of a computing device would also have important consequences for extending the potential
for computation. The speed of light is one of the limits that constrain computing devices even today, so the ability to
boost it would extend further the limits of computation. We will explore several other intriguing approaches to
possibly increasing, or circumventing, the speed of light in chapter 6. Expanding the speed of light is, of course,
speculative today, and none of the analyses underlying our expectation of the Singularity rely on this possibility.
Do'stlaringiz bilan baham: