Membrane Gas Separation


  The Effects of Minor Components on



Download 4,39 Mb.
Pdf ko'rish
bet130/233
Sana13.04.2022
Hajmi4,39 Mb.
#549133
1   ...   126   127   128   129   130   131   132   133   ...   233
Bog'liq
206. Membrane Gas Separation

11 
The Effects of Minor Components on 
the Gas Separation Performance of 
Polymeric Membranes for Carbon 
Capture
Colin A. Scholes , Sandra E. Kentish and Geoff W. Stevens
Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), University of 
Melbourne, Parkville, Victoria, Australia
11.1
Introduction 
Gas separation polymeric membranes are a developing separation technology, which has 
the potential to effi ciently and economically separate gases in a range of industrial proc-
esses. Already, non - porous polymer membranes are used commercially for the removal 
of carbon dioxide and hydrogen sulfi de from natural gas, known as sweetening, small -
scale oxygen enrichment of air, as well as hydrogen recovery in ammonia production. 
The technology has also been researched for dehydration, hydrocarbon recovery, syngas 
separation, as well as carbon dioxide separation from fl ue gas [1,2] . The importance of 
the last two examples in the membrane fi eld has been developing over the past decade, 
as membrane technology has progressively demonstrated potential in carbon dioxide 
capture, part of the strategy of carbon capture and storage (CCS) to mitigate carbon emis-
sions from a range of industrial processes [3] . There are three main strategies for CO 
2
capture from fossil fuel based power plants [4] . Post - combustion is where CO 
2
capture 
occurs after combustion from the exiting fl ue gas. Pre - combustion occurs where fossil 
fuels are reformed into syngas comprising primarily of hydrogen and carbon monoxide, 


202
Membrane Gas Separation
carbon dioxide and water in a reducing environment. This is then further converted to 
more hydrogen through the water gas shift reaction and CO 
2
is then separated from 
hydrogen before combustion. Finally, in oxy - fuel combustion air is replaced by oxygen 
in the combustion process which produces a fl ue gas of mainly H 
2
O and CO 
2
, which is 
readily captured. For all three strategies, membrane technology has suffi ciently matured 
to become commercially competitive with other separation technologies in the coming 
decade. 
Alongside the major gases, a range of minor gas components are present in all of these 
applications [5] . For example, in natural gas sweetening the main separation is of CO 
2
and H 
2
S from CH 
4
but water and a range of hydrocarbons are also present. In post -
combustion capture the main separation is CO 
2
from N 
2
; however, the process also experi-
ences SOx (a combination of sulfur oxides), NOx (a combination of nitric oxides) and 
water. In pre - combustion capture, separation is of CO 
2
from H 
2
and N 
2
, with H 
2
S, CO, 
NH 
3
, water and hydrocarbons also present. In addition, O 
2
is often present in many of 
these processes, along with argon if air is used. Depending on the fuel source, heavy 
metals, such as mercury and arsenic, may exist, as well as halogens, such as fl uorine and 
chlorine, in their acidic form. Other processes than power generation with the possibility 
for carbon capture, such as cement production, refi neries and blast furnaces, also have a 
range of minor components present. The concentration of these minor components varies 
considerably and is dependent on the process, fuel, temperature and pressure of reaction. 
Potential concentrations of some of these minor components are provided in Table 11.1 . 
For membrane gas separation processes the effects of these minor components have to 
be considered on a case by case basis.
The impact of some of these minor components can be signifi cantly reduced by a suit-
able pre - treatment process, such as a de - sulfurizer or an adsorbent guard bed. However, 
remaining concentrations of these minor components in the membrane gas separation 
process may compete with CO 
2
(or other gas of interest) for separation and therefore 
decrease the observed permeability, as well as degrade the membrane structure, altering 
separation performance. Furthermore, the permeabilities of these minor components are 
of interest, because of the possibility of generating component - rich permeate or retentate 
streams, dependent on membrane selectivity. Thus for example, it may be possible to 
capture both acid gases (H 
2
S and CO 
2
) simultaneously from a pre - combustion stream. 
Table 11.1  Composition of minor components in a range of industrial processes [6 – 8]
Pre - combustion
Post - combustion
Iron blast 
furnace
Cement 
production
CO 
2
10 – 35 mol%
12 – 14 vol%
20 vol%
14 – 33 vol%
SOx

1000 – 5000 ppm

0 – 150 ppm
NOx

100 – 500 ppm

0 – 150 ppm
CO
300 – 4000 ppm

10 ppm
22 vol%
0 – 130 ppm

2
S
500 – 1000 ppm

0 – 5000 ppm

NH 
3
0 – 1500 ppm




2

20 vol%

4 vol%

Water
Saturated
Saturated
4 vol%
12.8 vol%
Hydrocarbons
0 – 100 ppm





The Effects of Minor Components on the Gas Separation Performance
203
Hence, this provides the opportunity to reduce the number of separation processes the 
feed gas may go through. 
Gas permeation through non - porous polymeric membranes is generally described by 
the solution - diffusion mechanism [2] . This is based on the solubility of specifi c gases 
within the membrane and their diffusion through the dense membrane matrix. In turn, the 
solubility of a specifi c gas component within a membrane is a function of its critical 
temperature, as this is a measure of the gas condensability. Critical temperatures for a 
range of gas components are provided in Table 11.2 . Conversely, the diffusivity depends 
upon the molecular size, as generally indicated by the kinetic diameter. Indeed, Robeson 
et al. [9] have recently postulated that the relationship between the ideal permeability of 
one species
i
  and that of another
j
  are related by a simple function:
P
kP
j
i
n
=
(11.1)
Where:
n
d
d
j
i
= ⎛⎝⎜

⎠⎟
2
(11.2)
However, to achieve the best fi t to this relationship they propose slight modifi cations to 
the kinetic diameters provided by Breck [10] which are more generally used. Both values 
are included in Table 11.2 where available.
Table 11.2  Kinetic diameter and critical temperature of common gases 
Gas
Breck kinetic 
diameter ( Å ) [10]
Robeson kinetic 
diameter ( Å ) [9]
Critical temperature 
(K) [11]

2
2.89
2.875
33.2

2
3.64
3.568
126.2
CO
3.76
132.9
Ar
3.40
150.8

2
3.46
3.347
154.6
NO
3.17
180
CH 
4
3.8
3.817
190.6
CO 
2
3.3
3.325
304.2
HCl
3.2
324.6

3

8
4.3
369.8

2
S
3.6
373.2
NH 
3
2.6
405.6
SO 
2
3.6
430.8
NO 
2
431.4
SO 
3
491

6

14
507.4

6

6
5.85
561.9

2
O
2.65
647.3
Hg
1750


204
Membrane Gas Separation

Download 4,39 Mb.

Do'stlaringiz bilan baham:
1   ...   126   127   128   129   130   131   132   133   ...   233




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish