Prediktor-korrektor metodi
Prediktor – korrektor usulini ko`p o`lchamli xususiy hosilali tenglamalarni
yechishga tadbiq etish mumkin. Shu maqsadda uch o`lchamli issiqlik o`tkazuvchanlik
tenglamasini qaraylik
41
3
1
2
2
,
i
i
x
u
t
u
(11)
bu yerda
t
x
x
x
u
u
,
,
,
3
2
1
ko`p o`zgaruvchili funksiya. Ushbu tenglama uchun
}
0
,
1
0
,
1
0
,
1
0
{
3
2
1
T
t
x
x
x
D
sohada
0
t
da boshlang`ich shart, hamda
)
3
,
2
,
1
(
1
;
0
i
x
i
da oltita chegaraviy
shartlar qo`yiladi. Qo`yilgan masalani yechish uchun prediktor – korrektor qoidasiga
asoslangan sxema quyidagi ko`rinishda bo`ladi:
,
2
/
3
2
2
1
1
6
1
n
n
n
n
n
u
u
u
u
u
(12a)
),
(
2
/
6
2
2
6
1
6
2
n
n
n
n
u
u
u
u
(12b)
),
(
2
/
6
3
3
6
2
6
3
n
n
n
n
u
u
u
u
(12c)
6
3
3
6
2
2
6
1
1
1
n
n
n
n
n
u
u
u
u
u
(12d)
Tenglamalar (12a-12c) prediktor sxemasi (stabillashtiruvchi tuzatmalar
sxemasi)
bo`lib,
u
funksiya
u
ning
qiymatini
n
t
n
qatlamdan
2
1
2
2
1
n
t
t
n
n
qatlamga olib chiqadi, tenglama (12d) esa korrektor sxemasi
bo`lib hisoblanadi.
Endi sxema (12) ning absolyut turg`unligini va vaqt
t
hamda
3
2
1
,
,
x
x
x
o`zgaruvchilar bo`yicha ikkinchi tartibli aniqlikka ega ekanligini ko`rsatamiz.
Ayirmali sxemalar (12)-(12d) dan kasrli qadamlar
6
3
6
2
6
1
,
,
n
n
n
u
u
u
larni yo`qotish
orqali quyidagi sxemaga ega bo`lamiz:
.
8
4
2
1
3
2
1
3
1
3
2
3
1
2
1
2
1
1
n
n
n
n
n
n
n
n
u
u
u
u
u
u
u
u
(13)
Bundan ayirmali sxema (9.6) ning absolyut turg`unligi va ikkinchi tartibli
aniqlikka ega ekanligi kelib chiqadi.
42
Absolyut turg`un va ikkinchi tartibli aniqlikka ega bo`lgan yana bir ayirmali
sxemani keltiramiz:
.
2
1
2
1
2
1
;
2
1
2
1
;
2
1
1
1
3
3
2
2
3
1
1
3
2
3
3
2
2
3
1
1
3
1
3
2
3
1
1
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
(14)
Ayirmali sxema (9.8) ni boshqacha qilib quyidagicha ham yozish mumkin:
.
2
1
;
2
1
;
2
1
1
3
3
2
1
3
2
2
3
1
3
2
3
2
3
1
1
3
1
n
n
n
n
n
n
n
n
n
n
n
n
n
n
u
u
u
u
u
u
u
u
u
u
u
u
u
u
(15)
Bundan ko`rinadiki, ushbu sxema stabillashtiruvchi tuzatmalar sxemasi oilasiga
mansub sxemadan iborat. Bu sxemadan ham kasrli qadamlarni yo`qotsak, ayirmali
sxema (9.7) ni hosil qilamiz, ya’ni sxemalar (12) va (14) o`zaro ekvivalent.
Prediktor – korrektor tipidagi yana bir ayirmali sxemani keltiramiz:
,
2
6
1
1
6
1
n
n
n
u
u
u
(16a)
,
2
6
2
2
6
1
6
2
n
n
n
u
u
u
(16b)
,
2
2
1
3
6
2
2
1
n
n
n
u
u
u
(16c)
,
2
1
1
n
n
n
u
u
u
(16d)
Ayirmali sxemalar (16a)-(16c) ajratish sxemasiga asoslangan prediktor
sxemalari, sxema (16d) esa korrektor sxemasi bo`lib hisoblanadi. Ayirmali sxema (16)
butun qadamlarda ushbu ko`rinishga ega bo`ladi:
43
.
8
4
2
1
3
2
1
3
1
3
2
3
1
2
1
2
1
1
n
n
n
n
n
n
n
n
u
u
u
u
u
u
u
u
(17)
Bu sxema ayirmali sxema (13) bilan mos tushadi, ya’ni ayirmali sxemalar (16)
ilgarigi sxemalarga ekvivalent.
Prediktor – korrektor qoidasiga asoslangan sxemalarni approksimatsion
tuzatmalar sxemasi deb ataymiz.
Ayirmli sxemalar (12), (15) va (16) dagi har bir tenglamalar progonka metodi
bilan yechiladi.
Xulosa
Ko‘p o‘lchovli ayirmali sxemalarni nazariy jihatdan tadqiq etishda ularning
approksimatsiya xatoligi, turg‘unligi va yaqinlashishi masalalari o‘rganildi. Prediktor
– korrektor usulini ko`p o`lchamli xususiy hosilali tenglamalarni yechishga tadbiq etish
mumkin ekan. Biz buni uch o`lchamli issiqlik o`tkazuvchanlik tenglamasi tatbig’iga
ko’rib chiqdik.
Foydalanilgan adabiyotlar
1.
Годунов С. К., Рябенький В. С. “Разностные схемы, введению в теорию” М. Наука
1977 год
2.
Рождественский Б.Л., Яненко Н.Н. “СИСТЕМЫ КВАЗИЛИНЕЙНЫХ УРАВНЕНИЙ
И ИХ ПРИЛОЖЕНИЯ К ГАЗОВОЙ ДИНАМИКЕ”
3.
Рихтмайер Р., Мортон К. “Разностные методы решения краевых задач.”-М.: Мир,
1972.
4.
Самарский А.А. “Теория разностных схем” – М., Наука, 1989
5.
Самарский А.А., Гулин В.А. “Численные методы” – М., Наука, 1989
6.
Калиткин Н.Н. “Численные методы” – М., Наука, 1978
7.
Самарский А.А., Николаев Е.С. “Методы решения сеточных уравнений” – М., Наука,
1978
8.
Jo‘rayev G‘. U., Xudoyberganov M. O‘., Baxramov S. A. “Ayirmali sxemalar nazariyasi
elementlari” Toshkent. 2014-yil
9.
Петров И. Б., Лобанов А. И. “Лекции по вычислительной математике: Учебное
пособие” М. БИНОМ. 2006 год
44
ФИО автора:
associate Professor P.A.Adilov
TSPU of the name NIZAMI, Tashkent, Republic Uzbekistan
Название публикации:
«ORGANIZATION OF INDEPENDENT WORK OF
STUDENTS IN ENGINEERING GRAPHICS»
Аннотация
В настоящей статье рассматриваются самостоятельной работ студентов в
процессе обучений с целью овладение умение и навык по инженерной графикой.
Abstract
This article examines the independent work of students in the learning process in
order to master the skill and skill in engineering graphics.
Ключевые слова:
самостоятельная работа, инженерная графика, знания,
навыки, информация, организовать, рабочие тетради, графические работы.
Keywords:
independent work, engineering graphics, knowledge, skills,
information, organize, workbooks, graphic works.
In the "National Training Program", one of the main tasks noted is the training of
specialists who quickly adapt to the circumstances, analyze, identify problem situations
with a creative approach, independently develop their knowledge and skills, are able
to independently conduct activities in the chosen specialty along with deep theoretical
and practical knowledge.
It is known that in today's rapidly expanding range of information and knowledge,
it is difficult to convey all the information to students during classes in the classroom.
Experiments show that a student can deeply assimilate knowledge only if he
studies independently and constantly works on himself. Basic knowledge, skills and
abilities of students are formed only in the process of independent education, the ability
to function independently is formed and there is an interest in creative work.
One of the main tasks of the university is to show the direction for independent
education, to show the way to knowledge, along with teaching students to teach them
45
to study more, plan and form independent education of students, creating all the
necessary conditions for this.
Independent work of a student (SRS) is a systematic activity aimed at acquiring a
certain part of the knowledge, skills and qualifications noted in the curriculum for a
specific subject performed by a student outside the classroom on the basis of the
teacher's advice and recommendations.
The creation of the SRS in the early stages of training involves a number of tasks.
In particular, the following type of education – higher education is difficult for a first-
year student to adapt to. Because they do not know how to organize their independent
work in the learning process, from which source to look for information, analyze and
sort the necessary ones, express their opinions accurately and clearly, correctly allocate
their time, and correctly assess their mental and physical abilities. Most importantly,
they will not be spiritually ready for independent learning.
Therefore, each teacher should inspire confidence in the student in his abilities
and mental abilities, it is necessary to gradually teach them the correct organization of
independent learning. It is important to increase the initiative and role of students,
taking into account the fact that the knowledge and skills independently acquired by
students are complex and expanded from course to course. A student who has started
to study independently not only performs the work assigned by the teacher, but also
independently chooses additional knowledge that he considers necessary, depending
on his needs, interests and abilities.
Independent work on subjects according to the working curricula of the bachelor's
degree at the department is developed and approved at the beginning of the academic
year in accordance with the requirements of the instructions.
In particular, the topics of independent work for the organization of independent
work are developed and transferred to students at the beginning of the academic
semester. Depending on the nature of engineering graphics subjects taught at the
department, the following forms are used •
* work independently with some sources of science through educational literature,
work with educational resources;
46
* preparation for practical, seminar and laboratory classes;
* preparation of abstracts on a specific topic;
* execution of course work (projects);
* collection of materials for the final qualification work and master's thesis;
* execution of calculation and graphic works;
* work on layouts, models, and works of art;
* solving existing problems in practice, preparing test questions, preparing
questions;
* preparation of scientific articles, reports and lectures;
* solving non-standard questions of a practical and creative nature;
* do your homework and more.
Depending on the nature of the engineering graphics subjects taught at the
department the following forms are used:
• with the help of educational literature, independently master topics in the subject
chosen for independent work, work with educational resources;
* completing homework (graphic works).
At the department, it is necessary to create conditions for the implementation of
independent work of students, for example, a small library, which will crawl not only
students, but also masters, doctoral students and applicants. There should be drawing
boards, equipment for independent research and implementation of course projects
using modern information and communication technologies and technical means
(computer, electronic textbooks, drawing equipment, various rulers, compasses,
measuring instruments).
Need to conduct a special organizational and methodological work for the
formation of students ' skills to perform independent work (how to find sources to
analyze and recognize them, to pass, to clearly Express their ideas, just allocate your
time etc.).
The cases that need to be addressed for the organization of independent work in
each subject of the curriculum, and was adopted the following conclusion:
a) to organize self-education subjects on the basis of the work study program.
47
b) note the oral defense of independent notes made by students on the assigned
topics of independent education.
c) practically use it for independent education in subjects that have been published
in workbooks.
Literature:
1.
N.E.Tashimov, F.Toshpulatov, “Activating Students in Building Intersection
Line by Quadratic Transformations Method”. Eastern European Scientific journal.
2018,105.
2.
P.Adilov, N.E.Tashimov,
S.Seytimbetov.
Computer-Test Control of
Knowledge of Students in Engineering Graphics.
International Journal of Progressive
Scinces and Technologies (IJPSAT) 2019, 193-195.
3.
Н.Ташимов., Ф.Тошполатов. Организация самостоятельной работы
студентов по начертательной геометрии.
Профессионально-педагогическая
культура учителя и преподавателя: содержание, модели и технологии
образовательной деятельности. Сборник материалов VII Международной
научно-практической конференции (г.Белгород, 16-17 апреля 2019 г.). 151-154
ст.
48
Do'stlaringiz bilan baham: |